For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 2, 2019, Pages 501-525                                                                DOI:10.11948/2156-907X.20170234
Study on a kind of $p$-Laplacian neutral differential equation with multiple variable coefficients
Zhibo Cheng,Zhonghua Bi
Keywords:Neutral operator with multiple variable coefficients, $p$-Laplacian, periodic solution, extension of Mawhin's continuation theorem, singularity.
Abstract:
      In this paper, we first discuss some properties of the neutral operator with multiple variable coefficients $(Ax)(t):=x(t)-\sum\limits_{i=1}^{n}c_i(t)x(t-\delta_i)$. Afterwards, by using an extension of Mawhin's continuation theorem, a kind of second order $p$-Laplacian neutral differential equation with multiple variable coefficients as follows $$\left(\phi_p\left(x(t)-\sum\limits_{i=1}^{n}c_i(t)x(t-\delta_i)\right)'\right)'=\tilde{f}(t,x(t),x'(t))$$ is studied. Finally, we consider the existence of periodic solutions for two kinds of second-order $p$-Laplacian neutral Rayleigh equations with singularity and without singularity. Some new results on the existence of periodic solutions are obtained. It is worth noting that $c_i$ ($i=1,\cdots,n$) are no longer constants which are different from the corresponding ones of past work.
PDF      Download reader