# STUDY ON A KIND OF P-LAPLACIAN NEUTRAL DIFFERENTIAL EQUATION WITH MULTIPLE VARIABLE COEFFICIENTS* 

Zhibo Cheng ${ }^{1,2, \dagger}$ and Zhonghua $\mathrm{Bi}^{1}$


#### Abstract

In this paper, we first discuss some properties of the neutral operator with multiple variable coefficients $(A x)(t):=x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)$. Afterwards, by using an extension of Mawhin's continuation theorem, a kind of second order $p$-Laplacian neutral differential equation with multiple variable coefficients as follows $$
\left(\phi_{p}\left(x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right)^{\prime}\right)^{\prime}=\tilde{f}\left(t, x(t), x^{\prime}(t)\right)
$$ is studied. Finally, we consider the existence of periodic solutions for two kinds of second-order $p$-Laplacian neutral Rayleigh equations with singularity and without singularity. Some new results on the existence of periodic solutions are obtained. It is worth noting that $c_{i}(i=1, \cdots, n)$ are no longer constants which are different from the corresponding ones of past work.


Keywords Neutral operator with multiple variable coefficients, $p$-Laplacian, periodic solution, extension of Mawhin's continuation theorem, singularity.

MSC(2010) 34C25, 34B16, 34B18.

## 1. Introduction

The study of properties of neutral operator can be traced back to 1995. In [20], Zhang first investigated the properties of the neutral operator $\left(A_{1} x\right)(t):=x(t)-$ $c x(t-\delta)$, which became an effective tool for the research on differential equations with this prescribed neutral operator, for example $[2,3,10,17,18]$. Lu and Ge [12] in 2004 investigated an extension of $A_{1}$, namely the neutral operator $\left(A_{2} x\right)(t):=$ $x(t)-\sum_{i=1}^{n} c_{i} x\left(t-\delta_{i}\right)$. Afterwards, Du [5] discussed the neutral operator with variable coefficient $\left(A_{3} x\right)(t):=x(t)-c(t) x(t-\delta)$, here $c(t)$ is $T$-periodic function.

During the past few years, some good deal of works have been performed on the existence of periodic solutions of second-order $p$-Laplacian neutral differential equations (see $[1,4,6,7,11,13,15,16,19,21]$ ). Zhu and Lu [21] in 2007 first discussed

[^0]the existence of a periodic solution for a kind of $p$-Laplacian neutral differential equation as follows
$$
\left(\phi_{p}(x(t)-c x(t-\delta))^{\prime}\right)^{\prime}+g(t, x(t-\tau(t)))=p(t)
$$
where $\phi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\phi_{p}(s)=|s|^{p-2} s$, here $p>1$ is a constant. Since $\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}$ is nonlinear (i.e.quasilinear), Mawhin's continuation theorem [8] did not be apply directly. In order to get around this difficulty, Zhu and Lu translated the $p$-Laplacian neutral differential equation into a two-dimensional system
\[

\left\{$$
\begin{array}{l}
\left(A_{1} x_{1}\right)^{\prime}(t)=\phi_{q}\left(x_{2}(t)\right)=\left|x_{2}(t)\right|^{q-2} x_{2}(t) \\
x_{2}^{\prime}(t)=-g\left(t, x_{1}(t-\tau(t))\right)+p(t)
\end{array}
$$\right.
\]

where $\frac{1}{p}+\frac{1}{q}=1$, for which Mawhin's continuation theorem can be applied. Afterwards, using topological degree theory, Peng [15] discussed the existence of a periodic solution for the following $p$-Laplacian neutral Rayleigh equation with a deviating argument

$$
\left(\phi_{p}\left((x(t)-c x(t-\delta))^{\prime}\right)\right)^{\prime}+f\left(x^{\prime}(t)\right)+g(x(t-\tau(t)))=e(t)
$$

Lu [13] in 2009 was concerned with the existence of a periodic solution for a kind of $p$-Laplacian neutral functional differential equation

$$
\begin{aligned}
\left(\phi_{p}\left(\left(x(t)-\sum_{j=1}^{n} c_{j} x\left(t-\delta_{j}\right)\right)^{\prime}\right)\right)^{\prime}= & f(x(t)) x^{\prime}(t)+\alpha(t) g(x(t)) \\
& +\sum_{j=1}^{n} \beta_{j}(t) g\left(x\left(t-\tau_{j}(t)\right)\right)+p(t)
\end{aligned}
$$

The method of proof used the continuation theorem of coincidence degree theory developed by J. Mawhin. By applications of Mawhins continuation theorem, Du [6] in 2013 obtained some existence results of periodic solutions for a type of $p$-Laplacian neutral Liénard equation

$$
\left(\phi_{p}\left((x(t)-c(t) x(t-\delta))^{\prime}\right)\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(x(t-\tau(t)))=e(t)
$$

All the aforementioned results are related to neutral equations or neutral equations with multiple delays or neutral equations with variable coefficient. Naturally, a new question arises: how neutral differential equation works on multiple variable coefficients? Besides practical interests, the topic has obvious intrinsic theoretical significance. To answer this question, in this paper, we focus on a kind of second order $p$-Laplacian neutral differential equation as follows

$$
\begin{equation*}
\left(\phi_{p}\left(x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right)^{\prime}\right)^{\prime}=\tilde{f}\left(t, x(t), x^{\prime}(t)\right) \tag{1.1}
\end{equation*}
$$

where $c_{i}(t) \in C^{1}(\mathbb{R}, \mathbb{R})$ and $c_{i}(t+T)=c_{i}(t) ; \delta_{i}$ is constant and $0 \leq \delta_{i}<T$, $i=1,2, \cdots, n . \tilde{f}:[0, T] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is an $L^{2}$-Carathéodory function, i.e. it is measurable in the first variable and continuous in the second variable, and for
every $0<r<s$ there exists $h_{r, s} \in L^{2}[0, T]$ such that $\left|\tilde{f}\left(t, x(t), x^{\prime}(t)\right)\right| \leq h_{r, s}$ for all $x \in[r, s]$ and a.e. $t \in[0, T]$.

The techniques used are quite different from that in $[6,13,15,21]$ and our results are more general than those in $[6,13,15,21]$ in two aspects. First, although $(A x)(t):=x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)$ is a natural generalization of the operator $\left(A_{j} x\right)(t)$, $j=1,2,3$, the class of neutral differential equation with $A$ typically possesses a more complicated nonlinearity than neutral differential equation with $\left(A_{j} x\right)(t)$. Second, due to $(A x)^{\prime}(t) \neq\left(A x^{\prime}\right)(t)$, the work on estimating a priori bounds of periodic solutions for (1.1) is more difficult than the corresponding work on neutral equations in $[6,13,15,21]$.

The remaining part of the paper is organized as follows. In section 2, we analyze qualitative properties of the neutral operator $(A x)(t)$ which will be helpful for further studies of differential equations with this neutral operator. In section 3 , by employing an extension of Mawhin's continuation theorem, we prove the existence of a periodic solution for (1.1). In section 4 , we investigate the existence of a periodic solution for a kind of $p$-Laplacian neutral Rayleigh equation with multiple variable coefficients by applications of Theorem 3.1. In comparison to $[6,13,15,21]$, we avoid to translate $p$-Laplacian neutral Rayleigh equation into the two-dimensional system. In section 5, we discuss the existence of a periodic solution for a kind of $p$-Laplacian singular neutral equation with multiple variable coefficients by applications of Theorem 3.1. In section 6, some examples are given to show applications of theorems.

## 2. Analysis of the generalized neutral operator

$$
\left\|c_{i}\right\|:=\max _{t \in[0, T]}\left|c_{i}(t)\right|, i=1,2, \cdots n ; \quad\left\|c_{k}\right\|:=\max \left\{\left\|c_{1}(t)\right\|,\left\|c_{2}(t)\right\|, \cdots\left\|c_{n}(t)\right\|\right\}
$$

Set $C_{T}=\{x \in C(\mathbb{R}, \mathbb{R}): x(t+T)=x(t), t \in \mathbb{R}\}$, then $(x,\|\cdot\|)$ is a Banach space. Define operators $A, B: C_{T} \rightarrow C_{T}$, by:

$$
(A x)(t)=x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right), \quad(B x)(t)=\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)
$$

Lemma 2.1. If $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1$, then operator $A$ has a continuous inverse $A^{-1}$ on $C_{T}$, satisfying
(1)

$$
\left|\left(A^{-1} x\right)(t)\right| \leq\left\{\begin{array}{cl}
\frac{\|x\|}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}, & \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|<1 \\
\frac{\frac{1}{1 c_{k} \|}\|x\|}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|}, & \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|>1
\end{array}\right.
$$

(2)

$$
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right| d t \leq\left\{\begin{array}{c}
\frac{1}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|} \int_{0}^{T}|x(t)| d t, \quad \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|<1 \\
\frac{1}{1-\frac{1}{c_{k} \|}} \frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|
\end{array} \int_{0}^{T}|x(t)| d t, \quad \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|>1 .\right.
$$

Proof. We have the following two cases.
Case 1: $\sum_{i=1}^{n}\left\|c_{i}\right\|<1$.

$$
\begin{aligned}
& (B x)(t)=\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right) \\
& \left(B^{2} x\right)(t)=\sum_{l_{1}=1}^{n} c_{l_{1}}(t) \sum_{l_{2}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}\right) x\left(t-\delta_{l_{1}}-\delta_{l_{2}}\right) \\
& \left(B^{3} x\right)(t)=\sum_{l_{1}=1}^{n} c_{l_{1}}(t) \sum_{l_{2}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}\right) \sum_{l_{3}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}-\delta_{l_{2}}\right) x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\delta_{l_{3}}\right)
\end{aligned}
$$

Therefore, we have
$\left(B^{j} x\right)(t)=\sum_{l_{1}=1}^{n} c_{l_{1}}(t) \sum_{l_{2}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}\right) \cdots \sum_{l_{j}=1}^{n} c_{l_{j}}\left(t-\delta_{l_{1}}-\delta_{l_{2}} \cdots-\delta_{l_{j-1}}\right) x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)$,
and

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left(B^{j} x\right)(t)= & x(t)+\sum_{j=1}^{\infty} \sum_{l_{1}=1}^{n} c_{l_{1}}(t) \sum_{l_{2}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}\right) \cdots \\
& \times \sum_{l_{j}=1}^{n} c_{l_{j}}\left(t-\delta_{l_{1}}-\delta_{l_{2}} \cdots-\delta_{l_{j-1}}\right) x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)
\end{aligned}
$$

Since $A=I-B$ and $\|B\|<1$, we get $A$ has a continuous inverse $A^{-1}: C_{T} \rightarrow C_{T}$ with

$$
A^{-1}=(I-B)^{-1}=I+\sum_{j=1}^{\infty} B^{j}=\sum_{j=0}^{\infty} B^{j}
$$

where $B^{0}=I$. Then, we get

$$
\begin{aligned}
& \left|\left(A^{-1} x\right)(t)\right|=\left|\sum_{j=0}^{\infty}\left(B^{j} x\right)(t)\right|=\left|x(t)+\sum_{j=1}^{\infty}\left(B^{j} x\right)(t)\right| \\
= & \left|x(t)+\sum_{j=1}^{\infty} \sum_{l_{1}=1}^{n} c_{l_{1}}(t) \cdots \sum_{l_{j}=1}^{n} c_{l_{j}}\left(t-\delta_{l_{1}}-\delta_{l_{2}} \cdots-\delta_{l_{j-1}}\right) x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right| \\
\leq & \frac{1}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}\|x\| \leq \frac{\|x\|}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|} .
\end{aligned}
$$

Moreover, we obtain

$$
\begin{aligned}
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right| d t & =\int_{0}^{T}\left|\sum_{j=0}^{\infty}\left(B^{j} x\right)(t)\right| d t \\
& \leq \sum_{j=0}^{\infty} \int_{0}^{T}\left|\left(B^{j} x\right)(t)\right| d t \\
& \leq \sum_{j=0}^{\infty} \int_{0}^{T} \mid \sum_{l_{1}=1}^{n} c_{l_{1}}(t) \sum_{l_{2}=1}^{n} c_{l_{2}}\left(t-\delta_{l_{1}}\right) \cdots \sum_{l_{j}=1}^{n} c_{l_{j}}\left(t-\delta_{l_{1}}-\delta_{l_{2}} \cdots-\delta_{l_{j-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right) \mid d t \\
\leq & \frac{1}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|} \int_{0}^{T}|x(t)| d t
\end{aligned}
$$

Case 2: $\sum_{i=1}^{n}\left\|c_{i}\right\|>1$.
The operator $(A x)(t)=x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)$ can be converted to

$$
\begin{aligned}
(A x)(t) & =x(t)-c_{k}(t) x\left(t-\delta_{k}\right)-\sum_{i=1, i \neq k}^{n} c_{i}(t) x\left(t-\delta_{i}\right) \\
& =-c_{k}(t)\left(-\frac{x(t)}{c_{k}(t)}+x\left(t-\delta_{k}\right)+\sum_{i=1, i \neq k}^{n} \frac{c_{i}(t)}{c_{k}(t)} x\left(t-\delta_{i}\right)\right) \\
& =-c_{k}(t)\left(x\left(t-\delta_{k}\right)-\frac{x(t)}{c_{k}(t)}+\sum_{i=1, i \neq k}^{n} \frac{c_{i}(t)}{c_{k}(t)} x\left(t-\delta_{i}\right)\right)
\end{aligned}
$$

Let $t_{1}=t-\delta_{k}$, we have
$(A x)\left(t_{1}+\delta_{k}\right)=-c_{k}\left(t_{1}+\delta_{k}\right)\left(x\left(t_{1}\right)-\frac{x\left(t_{1}+\delta_{k}\right)}{c_{k}\left(t_{1}+\delta_{k}\right)}+\sum_{i=1, i \neq k}^{n} \frac{c_{i}\left(t_{1}+\delta_{k}\right)}{c_{k}\left(t_{1}+\delta_{k}\right)} x\left(t_{1}+\delta_{k}-\delta_{i}\right)\right)$.
Define

$$
\begin{gathered}
(E x)(t)=-c_{k}\left(t_{1}+\delta_{k}\right)\left(x\left(t_{1}\right)-\frac{x\left(t_{1}+\delta_{k}\right)}{c_{k}\left(t_{1}+\delta_{k}\right)}+\sum_{i=1, i \neq k}^{n} \frac{c_{i}\left(t_{1}+\delta_{k}\right)}{c_{k}\left(t_{1}+\delta_{k}\right)} x\left(t_{1}+\delta_{k}-\delta_{i}\right)\right) \\
e_{i}=\left\{\begin{array}{ll}
\frac{1}{c_{k}\left(t_{1}+\delta_{k}\right)}, & \text { for } i=k ; \\
-\frac{c_{i}\left(t_{1}+\delta_{k}\right)}{c_{k}\left(t_{1}+\delta_{k}\right)}, & \text { for } i \neq k .
\end{array} \quad \varepsilon_{i}=\left\{\begin{array}{cc}
-\delta_{k}, & \text { for } i=k \\
\delta_{i}-\delta_{k}, & \text { for } i \neq k
\end{array}\right.\right.
\end{gathered}
$$

So, we get that $(E x)\left(t_{1}+\delta_{k}\right)=x\left(t_{1}+\delta_{k}\right)-\sum_{i=1}^{n} e_{i}\left(t_{1}+\delta_{k}\right) x\left(t_{1}-\varepsilon_{i}\right)$. From Case 1, we get

$$
\left|\left(E^{-1} x\right)(t)\right| \leq \frac{\|x\|}{1-\sum_{i=1}^{n}\left\|e_{i}\right\|}
$$

Moreover, since $\left(A^{-1} x\right)(t)=-\frac{1}{c_{k}(t)}\left(E^{-1} x\right)(t)$, then we arrive at

$$
\left|\left(A^{-1} x\right)(t)\right| \leq\left|-\frac{1}{c_{k}(t)}\left(E^{-1} x\right)(t)\right| \leq \frac{\frac{1}{\left\|c_{k}\right\|}\|x\|}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|}
$$

Meanwhile, we can get

$$
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right| d t \leq \frac{\frac{1}{\left\|c_{k}\right\|}}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|} \int_{0}^{T}\left|x^{\prime}(t)\right| d t
$$

Lemma 2.2 (see [15]). For $a_{i}, x_{i} \geq 0$, and $\sum_{i=1}^{n} a_{i}=1$, the following inequality holds,

$$
\left(\sum_{i=1}^{n} a_{i} x_{i}\right)^{p} \leq \sum_{i=1}^{n} a_{i} x_{i}^{p}, \quad \text { for any } p>1
$$

Lemma 2.3. If $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1$ and $p>1$, then

$$
\begin{equation*}
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right|^{p} d t \leq \sigma^{p} \int_{0}^{T}|x(t)|^{p} d t, \quad \forall x \in C_{T} \tag{2.1}
\end{equation*}
$$

where

$$
\sigma:=\left\{\begin{array}{cl}
\frac{1}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}, & \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|<1 \\
\frac{\frac{1}{1} \|}{1-\frac{1}{\left\|c_{k}\right\|} \|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|
\end{array}, \text { for } \sum_{i=1}^{n}\left\|c_{i}\right\|>1 .\right.
$$

Proof. We consider $\sum_{i=1}^{n}\left\|c_{i}\right\| \leq 1$, and the case $\sum_{i=1}^{n}\left\|c_{i}\right\|>1$ can be treated similarly. From Lemma 2.1, we have
$\left|\left(A^{-1} x\right)(t)\right|^{p} \leq\left(\sum_{j=0}^{\infty}\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|\right)^{p}$, for $\sum_{i=1}^{n}\left\|c_{i}\right\| \leq 1$.
Let $a_{j}=\frac{\left(1-\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}}{1-\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{n}}$, then $a_{j} \geq 0$ and $\sum_{j=0}^{n-1} a_{j}=1$, from Lemma 2.2,
we obtain

$$
\begin{aligned}
& \left(\sum_{j=0}^{\infty}\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|\right)^{p} \\
= & \left(\frac{1-\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{n}}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}\right)^{p}\left(\sum_{j=0}^{n-1} a_{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|\right)^{p} \\
\leq & \left(\frac{1-\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{n}}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}\right)^{p} \sum_{j=0}^{n-1} a_{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|^{p}
\end{aligned}
$$

$$
=\left(\frac{1-\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{n}}{1-\sum_{i=1}^{n}\left\|c_{i}\right\|}\right)^{p-1} \sum_{j=0}^{n-1}\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|^{p}
$$

Let $n \rightarrow+\infty$, we get

$$
\begin{align*}
\left|\left(A^{-1} x\right)(t)\right|^{p} & \leq\left(\sum_{j=0}^{\infty}\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|\right)^{p} \\
& \leq \frac{1}{\left(1-\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{p-1}} \sum_{j=0}^{\infty}\left(\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{j}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|^{p} . \tag{2.2}
\end{align*}
$$

Since $\int_{0}^{T}\left|x\left(t-\delta_{l_{1}}-\delta_{l_{2}}-\cdots-\delta_{l_{j}}\right)\right|^{p} d t=\int_{0}^{T}|x(t)|^{p} d t$, for any $j>0$, and from (2.2), we get

$$
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right|^{p} d t \leq \frac{1}{\left(1-\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{p}} \int_{0}^{T}|x(t)|^{p} d t
$$

Similarly, it is clear

$$
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right|^{p} d t \leq\left(\frac{\frac{1}{\left\|c_{k}\right\|}}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|}\right)^{p} \int_{0}^{T}|x(t)|^{p} d t
$$

## 3. Periodic solution for (1.1)

We first recall the extension of Mawhin's continuation theorem [9].
Let $X$ and $Z$ be Banach spaces with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Z}$, respectively. A continuous operator $M: X \bigcap \operatorname{dom} M \rightarrow Z$ is said to be quasi - linear if
(1) $\operatorname{Im} M:=M(X \bigcap \operatorname{dom} M)$ is a closed subset of $Z$;
(2) $\operatorname{ker} M:=\{x \in X \bigcap \operatorname{dom} M: M x=0\}$ is a subspace of $X$ with $\operatorname{dim} \operatorname{ker} M<$ $+\infty$.

Let $X_{1}=\operatorname{ker} M$ and $X_{2}$ be the complement space of $X_{1}$ in $X$, then $X=X_{1} \oplus X_{2}$. In the meanwhile, $Z_{1}$ is a subspace of $Z$ and $Z_{2}$ is the complement space of $Z_{1}$ in $Z$, so $Z=Z_{1} \oplus Z_{2}$. Suppose that $P: X \rightarrow X_{1}$ and $Q: Z \rightarrow Z_{1}$ two projects and $\Omega \subset X$ is an open and bounded set with the origin $\theta \in \Omega$.

Let $N_{\lambda}: \bar{\Omega} \rightarrow Z, \lambda \in[0,1]$ is a continuous operator. Denote $N_{1}$ by $N$, and let $\sum_{\lambda}=\left\{x \in \bar{\Omega}: M x=N_{\lambda} x\right\} . N_{\lambda}$ is said to be $M$ - compact in $\bar{\Omega}$ if
(3) there is a vector subspace $Z_{1}$ of $Z$ with $\operatorname{dim} Z_{1}=\operatorname{dim} X_{1}$ and an operator $R: \bar{\Omega} \times X_{2}$ being continuous and compact such that for $\lambda \in[0,1]$,

$$
\begin{equation*}
(I-Q) N_{\lambda}(\bar{\Omega}) \subset \operatorname{Im} M \subset(I-Q) Z \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
Q N_{\lambda} x=0, \quad \lambda \in(0,1) \Leftrightarrow Q N x=0,  \tag{3.2}\\
R(\cdot, 0) \text { is the zero operator and }\left.R(\cdot, \lambda)\right|_{\Sigma_{\lambda}}=\left.(I-P)\right|_{\Sigma_{\lambda}}, \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
M[P+R(\cdot, \lambda)]=(I-Q) N_{\lambda} . \tag{3.4}
\end{equation*}
$$

Let $J: Z_{1} \rightarrow X_{1}$ be a homeomorphism with $J(\theta)=\theta$.
Lemma 3.1 (see [9]). Let $X$ and $Z$ be Banach space with norm $\|\cdot\|_{X}$ and $\|\cdot\|_{Z}$, respectively, and $\Omega \subset X$ be an open and bounded set with $\theta \in \Omega$. Suppose that $M: X \cap \operatorname{dom} M \rightarrow Z$ is a quasi-linear operator and

$$
N_{\lambda}: \bar{\Omega} \rightarrow Z, \lambda \in(0,1)
$$

is an $M$-compact mapping. In addition, if
(a) $M x \neq N_{\lambda} x, \lambda \in(0,1), x \in \partial \Omega$,
(b) $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{ker} M, 0\} \neq 0$,
where $N=N_{1}$, then the abstract equation $M x=N x$ has at least one solution in $\bar{\Omega}$.
Next, we investigative the existence of a periodic solution for (1.1) by applications of the extension of Mawhin's continuation theorem.
Theorem 3.1. Assume $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1, \Omega$ be open bounded set in $C_{T}^{1}$. Suppose the following conditions hold:
(i) For each $\lambda \in(0,1)$, the equation

$$
\begin{equation*}
\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}=\lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right) \tag{3.5}
\end{equation*}
$$

has no solution on $\partial \Omega$;
(ii) The equation

$$
F(a):=\frac{1}{T} \int_{0}^{T} \tilde{f}(a, x(a), 0) d t=0
$$

has no solution on $\partial \Omega \cap \mathbb{R}$;
(iii) The Brouwer degree

$$
\operatorname{deg}\{F, \Omega \cap \mathbb{R}, 0\} \neq 0
$$

Then (1.1) has at least one periodic solution on $\bar{\Omega}$.
Proof. In order to use Lemma 3.1 studying the existence of a periodic solution to (1.1). Set $X:=\{x \in C[0, T]: x(0)=x(T)\}$ and $Z:=C[0, T]$,

$$
\begin{equation*}
M: X \cap \operatorname{dom} M \rightarrow Z, \quad(M x)(t)=\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime} \tag{3.6}
\end{equation*}
$$

where $\operatorname{dom} M:=\left\{u \in X: \phi_{p}(A u)^{\prime} \in C^{1}(\mathbb{R}, \mathbb{R})\right\}$. Then ker $M=\mathbb{R}$. In fact

$$
\text { ker } \begin{aligned}
M & =\left\{x \in X:\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}=0\right\} \\
& =\left\{x \in X: \phi_{p}(A x)^{\prime} \equiv c\right\} \\
& =\left\{x \in X:(A x)^{\prime} \equiv \phi_{q}(c):=c_{1}\right\} \\
& =\left\{x \in X:(A x)(t) \equiv c_{1} t+c_{2}\right\},
\end{aligned}
$$

where $q>1$ is a constant with $\frac{1}{p}+\frac{1}{q}=1$ and $c, c_{1}, c_{2}$ are constants in $\mathbb{R}$. Since $(A x)(0)=(A x)(T)$, then we get $\operatorname{ker} M=\left\{x \in X:(A x)(t) \equiv c_{2}\right\}$. In addition

$$
\operatorname{Im} M=\left\{y \in Z, \text { for } x(t) \in X \cap \operatorname{dom} M,\left(\phi_{p}(A x)^{\prime}\right)^{\prime}(t)=y(t)\right.
$$

$$
\int_{0}^{T} y(t) d t=\int_{0}^{T}\left(\phi_{p}\left((A x)^{\prime}\right)^{\prime}(t) d t=0\right\}
$$

So $M$ is quasi-linear. Let

$$
\begin{array}{ll}
X_{1}=\operatorname{ker} M, \quad X_{2}=\{x \in X: x(0)=x(T)=0\}, \\
Z_{1}=\mathbb{R}, & Z_{2}=\operatorname{Im} M .
\end{array}
$$

Clearly, $\operatorname{dim} X_{1}=\operatorname{dim} Z_{1}=1$, and $X=X_{1} \oplus X_{2}, P: X \rightarrow X_{1}, Q: Z \rightarrow Z_{1}$, be defined by

$$
P x=x(0), \quad Q y=\frac{1}{T} \int_{0}^{T} y(s) d s
$$

For $\forall \bar{\Omega} \subset X$, define $N_{\lambda}: \bar{\Omega} \rightarrow Z$ by

$$
\left(N_{\lambda} x\right)(t)=\lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right) .
$$

We claim $(I-Q) N_{\lambda}(\bar{\Omega}) \subset \operatorname{Im} M=(I-Q) Z$ holds. In fact, for $x \in \bar{\Omega}$, we have

$$
\begin{aligned}
& \int_{0}^{T}(I-Q) N_{\lambda} x(t) d t \\
= & \int_{0}^{T}(I-Q) \lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right) d t \\
= & \int_{0}^{T} \lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right) d t-\int_{0}^{T} \frac{\lambda}{T} \int_{0}^{T} \tilde{f}\left(s, x(s), x^{\prime}(s)\right) d s d t \\
= & 0 .
\end{aligned}
$$

Therefore, we have $(I-Q) N_{\lambda}(\bar{\Omega}) \subset \operatorname{Im} M$.
Moreover, for any $x \in Z$, we see that

$$
\begin{aligned}
& \int_{0}^{T}(I-Q) x(t) d t \\
= & \int_{0}^{T}\left(x(t)-\int_{0}^{T} \frac{1}{T} \int_{0}^{T} x(t) d t\right) d t \\
= & 0 .
\end{aligned}
$$

So, we have $(I-Q) Z \subset \operatorname{Im} M$.
On the other hand, form $x \in \operatorname{Im} M$ and $\int_{0}^{T} x(t) d t=0$, we have $x(t)=x(t)-$ $\int_{0}^{T} x(t) d t$. Hence, we get $x(t) \in(I-Q) Z$. Then $\operatorname{Im} M=(I-Q) Z$.

From $Q N_{\lambda} x=0$, we get $\frac{\lambda}{T} \int_{0}^{T} \tilde{f}\left(t, x(t), x^{\prime}(t)\right) d t=0$. Since $\lambda \in(0,1)$, then we have $\frac{1}{T} \int_{0}^{T} \tilde{f}\left(t, x(t), x^{\prime}(t)\right) d t=0$. Therefore, we obtain $Q N x=0$, then, (3.4) also holds.

Let $J: Z_{1} \rightarrow X_{1}, J(x)=x$, then $J(0)=0$. Define $R: \bar{\Omega} \times[0,1] \rightarrow X_{2}$,

$$
\begin{equation*}
R(x, \lambda)(t)=A^{-1} \int_{0}^{t} \phi_{p}^{-1}\left(a+\int_{0}^{s} \lambda \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right) d s, \tag{3.7}
\end{equation*}
$$

where $a \in R$ is a constant such that

$$
\begin{align*}
R(x, \lambda)(T) & =A^{-1} \int_{0}^{T} \phi_{p}^{-1}\left(a+\int_{0}^{s} \lambda \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(t), x^{\prime}(u)\right) d u\right) d s \\
& =0 \tag{3.8}
\end{align*}
$$

From Lemma 3.1 of [14], we know that $a$ is uniquely defined by

$$
a=\tilde{a}(x, \lambda)
$$

where $\tilde{a}(x, \lambda)$ is continuous on $\bar{\Omega} \times[0,1]$ and bounded sets of $\bar{\Omega} \times[0,1]$ into bounded sets of $\mathbb{R}$.

From (3.4), we can find that

$$
\mathrm{R}: \bar{\Omega} \times[0,1] \rightarrow X_{2}
$$

Now, for any $x \in \sum_{\lambda}=\left\{x \in \bar{\Omega}: M x=N_{\lambda} x\right\}=\left\{x \in \bar{\Omega}:\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}=\right.$ $\left.\lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right)\right\}$, we have $\int_{0}^{T} \tilde{f}\left(t, x(t), x^{\prime}(t)\right) d t=0$, together with (3.7) gives

$$
\begin{aligned}
R(x, \lambda)(t) & =A^{-1} \int_{0}^{t} \phi_{p}^{-1}\left(a+\int_{0}^{s} \lambda \tilde{f}\left(u, x(u), x^{\prime}(u) d u\right) d s\right. \\
& =A^{-1} \int_{0}^{t} \phi_{p}^{-1}\left(a+\int_{0}^{s}\left(\phi_{p}(A x)^{\prime}(u)\right)^{\prime} d u\right) d s \\
& =A^{-1} \int_{0}^{t} \phi_{p}^{-1}\left(a+\phi_{p}(A x)^{\prime}(s)-\phi_{p}(A x)^{\prime}(0)\right) d s
\end{aligned}
$$

Take $a=\phi_{p}(A x)^{\prime}(0)$, then we get

$$
\begin{aligned}
R(x, \lambda)(T) & =A^{-1} \int_{0}^{T}\left(\phi_{p}^{-1}\left(\phi_{p}(A x)^{\prime}(s)\right)\right) d s \\
& =A^{-1} \int_{0}^{T}(A x)^{\prime}(t) d s \\
& =A^{-1}((A x)(T)-(A x)(0)) \\
& =x(T)-x(0) \\
& =0
\end{aligned}
$$

where $a$ is unique, we see that

$$
a=\tilde{a}(x, \lambda)=\phi_{p}(A x)^{\prime}(0), \quad \forall \lambda \in[0,1] .
$$

So, we have

$$
\begin{aligned}
\left.R(x, \lambda)(t)\right|_{x \in \sum_{\lambda}} & =A^{-1} \int_{0}^{t}\left(\phi_{p}^{-1}\left(\phi_{p}(A x)^{\prime}(0)+\int_{0}^{s} \lambda \tilde{f}\left(t, u, x(u), x^{\prime}(u)\right) d u\right)\right) d s \\
& =A^{-1} \int_{0}^{t}\left(\phi_{p}^{-1}\left(\phi_{p}(A x)^{\prime}(s)\right)\right) d s \\
& =A^{-1} \int_{0}^{t}(A x)^{\prime}(s) d s
\end{aligned}
$$

$$
\begin{aligned}
& =x(t)-x(0) \\
& =(I-P) x(t),
\end{aligned}
$$

which yields the second part of (3.8). Meanwhile, if $\lambda=0$, we deduce

$$
\sum_{\lambda}=\left\{x \in \bar{\Omega}: M x=N_{\lambda} x\right\}=\left\{x \in \bar{\Omega}:\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}=\lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right)\right\}=c_{3}
$$ where $c_{3} \in \mathbb{R}$ is a constant. Thus, by the continuity of $\tilde{a}(x, \lambda)$ with respect to ( $x, \lambda$ ), $a=\tilde{a}(x, 0)=\phi_{p}(A c)^{\prime}(0)=0$, we arrive at

$$
R(x, 0)(t)=A^{-1} \int_{0}^{t} \phi_{p}^{-1}(0) d s=0, \quad \forall x \in \bar{\Omega},
$$

which yields the first part of (3.8). Furthermore, we consider

$$
M(P+R)=(I-Q) N_{\lambda} .
$$

In fact,

$$
\begin{equation*}
\frac{d}{d t} \phi_{p}(A(P+R))^{\prime}=(I-Q) N_{\lambda} . \tag{3.9}
\end{equation*}
$$

Integrating both side of (3.9) over $[0, s]$, we get

$$
\int_{0}^{s} \frac{d}{d t} \phi_{p}(A(P+R))^{\prime} d s=\int_{0}^{s}(I-Q) N_{\lambda} d s .
$$

Therefore, we obtain

$$
\begin{aligned}
\phi_{p}(A(P+R))^{\prime}(s)-a & =\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u-\int_{0}^{s} \frac{\lambda}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u d t \\
& =\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u,
\end{aligned}
$$

where $a:=\phi_{p}(A(P+R))^{\prime}(0)$. Then, we see that

$$
\begin{equation*}
(A(P+R))^{\prime}(s)=\phi_{p}^{-1}\left(a+\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right) . \tag{3.10}
\end{equation*}
$$

Integrating both side of $(3.10)$ over $[0, t]$, we have

$$
\begin{aligned}
\int_{0}^{t}(A(P+R))^{\prime}(s) d s= & \int_{0}^{t} \phi_{p}^{-1}\left(a+\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right. \\
& \left.-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right) d s,
\end{aligned}
$$

then

$$
\begin{aligned}
(P+R)(t)-(P+R)(0)= & A^{-1}\left(\int _ { 0 } ^ { t } \left(\phi _ { p } ^ { - 1 } \left(\left(a+\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right.\right.\right.\right. \\
& \left.\left.\left.\left.-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right)\right)\right) d s\right) .
\end{aligned}
$$

Since $R(x, \lambda)(0)=0, P(t)=P(0)=0$, we get

$$
\begin{aligned}
R(x, \lambda)(t)= & A^{-1}\left(\int _ { 0 } ^ { t } \phi _ { p } ^ { - 1 } \left(a+\lambda \int_{0}^{s} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right.\right. \\
& \left.\left.-\frac{\lambda s}{T} \int_{0}^{T} \tilde{f}\left(u, x(u), x^{\prime}(u)\right) d u\right) d t\right)
\end{aligned}
$$

Hence, we have $N_{\lambda}$ is $M$-compact on $\bar{\Omega}$. Obviously, the equation

$$
\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}=\lambda \tilde{f}\left(t, x(t), x^{\prime}(t)\right)
$$

can be converted to

$$
M x=N_{\lambda} x, \quad \lambda \in(0,1),
$$

where $M$ and $N_{\lambda}$ are defined by (3.6) and (3.7), respectively. As proved above,

$$
N_{\lambda}: \bar{\Omega} \rightarrow Z, \quad \lambda \in(0,1)
$$

is an $M$-compact mapping. From assumption (i), one finds

$$
M x \neq N_{\lambda} x, \quad \lambda \in(0,1), x \in \partial \Omega
$$

and assumptions (ii) and (iii) imply that $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{ker} M, \theta\}$ is valid and

$$
\operatorname{deg}\{J Q N, \Omega \cap \operatorname{ker} M, \theta\} \neq 0
$$

So, applying Lemma 3.1, (1.1) has at least one $T$-periodic solution.

## 4. Application of Theorem 3.1: p-Laplacian equation

As an application, we consider the following $p$-Laplacian neutral Rayleigh equation

$$
\begin{equation*}
\left(\phi_{p}\left(x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right)^{\prime}\right)^{\prime}+f\left(t, x^{\prime}(t)\right)+g(t, x(t))=e(t) \tag{4.1}
\end{equation*}
$$

where $f, g \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ are $T$-periodic function about $t$ and $f(t, 0)=0, e \in$ $C(\mathbb{R}, \mathbb{R})$ is a $T$-periodic function and $\int_{0}^{T} e(t) d t=0$. Next, by applications of Theorem 3.1, we investigate the existence of a periodic solution for (4.1) in the case that $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1$.

Theorem 4.1. Suppose $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1$ holds. Furthermore, assume that the following conditions are satisfied:
$\left(H_{1}\right)$ There exists a constant $K>0$ such that $|f(t, u)| \leq K$, for $(t, u) \in[0, T] \times \mathbb{R}$.
$\left(H_{2}\right)$ There exists a positive constant $D$ such that $x g(t, x)>0$ and $|g(t, x)|>K$, for $|x|>D$ and $t \in[0, T]$.
$\left(H_{3}\right)$ There exist positive constants $a, b$ and $B$ such that

$$
|g(t, x)| \leq a|x|^{p-1}+b, \quad \text { for }|x|>B \text { and } t \in[0, T]
$$

Then (4.1) has at least one solution with period $T$ if

$$
\sigma T \frac{\left(a\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}}{2}+\frac{\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|}{2}<1
$$

Proof. Consider the homotopic equation

$$
\begin{equation*}
\left(\phi_{p}\left(x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right)^{\prime}\right)^{\prime}+\lambda f\left(t, x^{\prime}(t)\right)+\lambda g(t, x(t))=\lambda e(t) \tag{4.2}
\end{equation*}
$$

Firstly, we claim that the set of all $T$-periodic solutions of (4.2) is bounded. Let $x(t) \in C_{T}$ be an arbitrary $T$-periodic solution of (4.2). Integrating both side of (4.2) over $[0, T]$, we have

$$
\begin{equation*}
\int_{0}^{T}\left(f\left(t, x^{\prime}(t)\right)+g(t, x(t))\right) d t=0 \tag{4.3}
\end{equation*}
$$

By mean-value theorem of integrals, there is a constant $\xi \in(0, T)$ such that

$$
g(\xi, x(\xi))+f\left(\xi, x^{\prime}(\xi)\right)=0
$$

then by $\left(H_{1}\right)$, it is clear

$$
|g(\xi, x(\xi))|=\left|-f\left(\xi, x^{\prime}(\xi)\right)\right| \leq K
$$

From $\left(H_{2}\right)$, we obtain

$$
|x(\xi)| \leq D
$$

Then, we have

$$
\begin{align*}
\|x\| & =\max _{t \in[0, T]}|x(t)|=\max _{t \in[\xi, \xi+T]}|x(t)| \\
& =\frac{1}{2} \max _{t \in[\xi, \xi+T]}(|x(t)|+|x(t-T)|) \\
& =\frac{1}{2} \max _{t \in[\xi, \xi+T]}\left(\left|x(\xi)+\int_{\xi}^{T} x^{\prime}(s) d s\right|+\left|x(\xi)-\int_{t-T}^{\xi} x^{\prime}(s) d s\right|\right)  \tag{4.4}\\
& \leq D+\frac{1}{2}\left(\int_{\xi}^{t}\left|x^{\prime}(s)\right| d s+\int_{t-T}^{\xi}\left|x^{\prime}(s)\right| d s\right) \\
& \leq D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s
\end{align*}
$$

Multiplying both sides of (4.2) by $(A x)(t)$ and integrating over the interval [ $0, T$ ], we get

$$
\begin{align*}
\int_{0}^{T}\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}(A x)(t) d t & +\lambda \int_{0}^{T} f\left(t, x^{\prime}(t)\right)(A x)(t) d t+\lambda \int_{0}^{T} g(t, x(t))(A x)(t) d t \\
& =\lambda \int_{0}^{T} e(t)(A x)(t) d t \tag{4.5}
\end{align*}
$$

Substituting $\int_{0}^{T}\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}(A x)(t) d t=-\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t$ into (4.5), we have

$$
\begin{aligned}
-\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t= & -\lambda \int_{0}^{T} f\left(t, x^{\prime}(t)\right)(A x)(t) d t-\lambda \int_{0}^{T} g(t, x(t))(A x)(t) d t \\
& +\lambda \int_{0}^{T} e(t)(A x)(t) d t
\end{aligned}
$$

So, we arrive at

$$
\begin{align*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t \leq & \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right|\left|x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right| d t \\
& +\int_{0}^{T}|g(t, x(t))|\left|x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right| d t \\
& +\int_{0}^{T}|e(t)|\left|x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right| d t \\
\leq & \left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t  \tag{4.6}\\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}|g(t, x(t))| d t \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}|e(t)| d t
\end{align*}
$$

Define

$$
E_{1}:=\{t \in[0, T]| | x(t) \mid \leq B\}, \quad E_{2}:=\{t \in[0, T]| | x(t) \mid>B\}
$$

From $\left(H_{2}\right)$ and $\left(H_{3}\right)$, we get

$$
\begin{align*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t \leq & \left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{E_{1}+E_{2}}|g(t, x(t))| d t \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}|e(t)| d t \\
\leq & \left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| K T  \tag{4.7}\\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\|\left(a\|x\|^{p-1} T+b T+\left\|g_{B}\right\| T\right) \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|e\| T\|x\| \\
= & a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\|^{p}+N_{1}\|x\|
\end{align*}
$$

where $\left\|g_{B}\right\|:=\max _{|x| \leq B}|g(t, x)|,\|e\|:=\max _{t \in[0, T]}|e(t)|$ and $N_{1}:=\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)(K T+$ $\left.b T+\left\|g_{B}\right\| T+\|e\| T\right)$. Substituting (4.4) into (4.7), we obtain

$$
\begin{equation*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t \leq a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\left(D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p}+N_{1}\left(D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right) \tag{4.8}
\end{equation*}
$$

Since $(A x)(t)=x(t)-\sum_{i=1}^{n} x\left(t-\delta_{i}\right)$, we have

$$
\begin{aligned}
(A x)^{\prime}(t) & =\left(x(t)-\sum_{i=1}^{n} c_{i}(t) x\left(t-\delta_{i}\right)\right)^{\prime} \\
& =x^{\prime}(t)-\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)-\sum_{i=1}^{n} c_{i}(t) x^{\prime}\left(t-\delta_{i}\right) \\
& =\left(A x^{\prime}\right)(t)-\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)
\end{aligned}
$$

and

$$
\left(A x^{\prime}\right)(t)=(A x)^{\prime}(t)+\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)
$$

Applying Lemma 2.1 and the Hölder inequality, we see that

$$
\begin{align*}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t & =\int_{0}^{T}\left|\left(A^{-1} A x^{\prime}\right)(t)\right| d t \\
& \leq \sigma \int_{0}^{T}\left|\left(A x^{\prime}\right)(t)\right| d t \\
& =\sigma \int_{0}^{T}\left|(A x)^{\prime}(t)+\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)\right| d t  \tag{4.9}\\
& \leq \sigma \int_{0}^{T}\left|(A x)^{\prime}(t)\right| d t+\sigma \int_{0}^{T}\left|\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)\right| d t \\
& \leq \sigma T^{\frac{1}{q}}\left(\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}+\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\|x\|
\end{align*}
$$

where $\left\|c_{i}^{\prime}\right\|=\max _{t \in[0, T]}\left|c_{i}^{\prime}(t)\right|$, for $i=1,2, \cdots n$. Substituting (4.8) into (4.9), applying a classical inequality,

$$
(a+b)^{k} \leq a^{k}+b^{k}, 0<k<1
$$

we have

$$
\begin{aligned}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq & \sigma T^{\frac{1}{q}}\left(a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}\left(D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right) \\
& +\sigma T^{\frac{1}{q}}\left(N_{1}\right)^{\frac{1}{p}}\left(D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{align*}
& +\sigma \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\| T\left(D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right) \\
\leq & \left(\sigma T^{\frac{1}{q}} \frac{\left(a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}}{2}+\frac{\sigma \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\| T}{2}\right) \int_{0}^{T}\left|x^{\prime}(t)\right| d t  \tag{4.10}\\
& +\sigma T^{\frac{1}{q}}\left(a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}} D+\sigma T^{\frac{1}{q}}\left(N_{1} D\right)^{\frac{1}{p}} \\
& +\sigma T^{\frac{1}{q}}\left(N_{1}\right)^{\frac{1}{p}}\left(\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{\frac{1}{p}}+\sigma \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\| T D
\end{align*}
$$

Since $\sigma T \frac{\left(a\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}}{2}+\frac{\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|}{2^{2}}<1$, it is easy to see that there exists a constant $M_{1}^{\prime}>0$ (independent of $\lambda$ ) such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq M_{1}^{\prime} . \tag{4.11}
\end{equation*}
$$

From (4.4), we see that

$$
\begin{equation*}
\|x\| \leq D+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s \leq D+\frac{1}{2} M_{1}^{\prime}:=M_{1} . \tag{4.12}
\end{equation*}
$$

As $(A x)(0)=(A x)(T)$, there exists a point $t_{0} \in(0, T)$ such that $(A x)^{\prime}\left(t_{0}\right)=0$, while $\phi_{p}(0)=0$, from (4.2), we have

$$
\begin{aligned}
\left|\phi_{p}(A x)^{\prime}(t)\right| & =\left|\int_{t_{0}}^{t}\left(\phi_{p}(A x)^{\prime}(s)\right)^{\prime} d s\right| \\
& \leq \lambda \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t+\lambda \int_{0}^{T}|g(t, x(t))| d t+\lambda \int_{0}^{T}|e(t)| d t \\
& \leq K T+T\left\|g_{M_{1}}\right\|+T\|e\| \\
& \leq K T+T\left\|g_{M_{1}}\right\|+T\|e\|:=M_{2}^{\prime}
\end{aligned}
$$

where $\left\|g_{M_{1}}\right\|:=\max _{|x(t)| \leq M_{1}}|g(t, x(t))|$.
Next, we claim that there exists a positive constant $M_{2}^{*}>M_{2}^{\prime}+1$ such that for all $t \in \mathbb{R}$, we get

$$
\begin{equation*}
\left\|(A x)^{\prime}\right\| \leq M_{2}^{*} \tag{4.13}
\end{equation*}
$$

In fact, if $(A x)^{\prime}$ is not bounded, there exists a positive constant $M_{2}^{\prime \prime}$ such that $\left\|(A x)^{\prime}\right\|>M_{2}^{\prime \prime}$ for some $(A x)^{\prime} \in \mathbb{R}$. Therefore, we have $\left\|\phi_{p}(A x)^{\prime}\right\|=\left\|(A x)^{\prime}\right\|^{p-1} \geq$ $\left(M_{2}^{\prime \prime}\right)^{p-1}$. Then, it is a contradiction. So, (4.13) holds. From Lemma 2.1 and (4.13),
we deduce

$$
\begin{align*}
\left\|x^{\prime}\right\| & =\left\|A^{-1} A x^{\prime}\right\| \\
& =\left\|A^{-1}\left(A x^{\prime}\right)(t)\right\| \\
& \leq \sigma\left\|(A x)^{\prime}(t)+\sum_{i=1}^{n} c_{i}^{\prime}(t) x\left(t-\delta_{i}\right)\right\|  \tag{4.14}\\
& \leq \sigma\left\|(A x)^{\prime}\right\|+\sigma\left(\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\|x\|\right) \\
& \leq \sigma M_{2}^{*}+\sigma \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\| M_{1}:=M_{2}
\end{align*}
$$

Set $M=\sqrt{M_{1}^{2}+M_{2}^{2}}+1$, we have

$$
\Omega=\left\{x \in C_{T}^{1}(\mathbb{R}, \mathbb{R}) \mid\|x\| \leq M+1,\left\|x^{\prime}\right\| \leq M+1\right\}
$$

and we know that (4.1) has no solution on $\partial \Omega$ as $\lambda \in(0,1)$ and when $x(t) \in$ $\partial \Omega \cap \mathbb{R}, \quad x(t)=M+1$ or $x(t)=-M-1$, from (4.4) we know that $M+1>D$. So, from $\left(H_{2}\right)$, we see that

$$
\begin{gathered}
\frac{1}{T} \int_{0}^{T} g(t, M+1) d t \neq 0 \\
\frac{1}{T} \int_{0}^{T} g(t,-M-1) d t \neq 0
\end{gathered}
$$

since $\int_{0}^{T} e(t) d t=0$. So condition (ii) of Theorem 3.1 is also satisfied. Set

$$
H(x, \mu)=\mu x+(1-\mu) \frac{1}{T} \int_{0}^{T} g(t, x) d t, \quad x \in \partial \Omega \cap \mathbb{R}, \quad \mu \in[0,1]
$$

Obviously, from $\left(H_{1}\right)$, we can get $x H(x, \mu)>0$ and thus $H(x, \mu)$ is a homotopic transformation and

$$
\begin{aligned}
\operatorname{deg}\{F, \Omega \cap \mathbb{R}, 0\} & =\operatorname{deg}\left\{\frac{1}{T} \int_{0}^{T} g(t, x) d t, \Omega \cap \mathbb{R}, 0\right\} \\
& =\operatorname{deg}\{x, \Omega \cap \mathbb{R}, 0\} \neq 0
\end{aligned}
$$

So condition (iii) of Theorem 3.1 is satisfied. Applying Theorem 3.1, (4.1) has at least one $T$-periodic solution.

## 5. Application of Theorem 3.1: p-Laplacian equation with singularity

In this section, we consider the existence of a periodic solution for (4.1) with singularity, where $g(t, x)=g_{0}(x)+g_{1}(t, x), g_{1} \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ is a $T$-periodic function, $g_{0} \in C((0, \infty) ; \mathbb{R})$ has a strong singularity at $x=0$, i.e.

$$
\begin{equation*}
\int_{0}^{1} g_{0}(x) d x=-\infty \tag{5.1}
\end{equation*}
$$

Theorem 5.1. Suppose conditions $\sum_{i=1}^{n}\left\|c_{i}\right\| \neq 1$ and $\left(H_{1}\right)$ hold. Assume that the following conditions are satisfied:
$\left(H_{4}\right)$ There exist positive constants $D_{1}, D_{2}$ with $D_{2}<D_{1}$ such that $g(t, x)<$ $-K$ for $(t, x) \in[0, T] \times\left(0, D_{2}\right)$ and $g(t, x)>K$ for $(t, x) \in[0, T] \times\left(D_{1},+\infty\right)$.
$\left(H_{5}\right)$ There exist positive constants $\alpha$ and $\beta$ such that

$$
g(t, x) \leq \alpha x^{p-1}+\beta, \quad \text { for }(t, x) \in[0, T] \times(0,+\infty)
$$

Then (4.1) has at least one T-periodic solution if

$$
\frac{1}{2} \sigma T\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{\frac{1}{p}}+\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\right)<1
$$

Proof. Consider the homotopic equation

$$
\begin{equation*}
\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}+\lambda f\left(t, x^{\prime}(t)\right)+\lambda g(t, x(t))=\lambda e(t) \tag{5.2}
\end{equation*}
$$

We follow same strategy and notation as in the proof of Theorem 4.1. Integrating both sides of (5.2), we get

$$
\begin{equation*}
\int_{0}^{T}\left(f\left(t, x^{\prime}(t)\right)+g(t, x(t))\right) d t=0 \tag{5.3}
\end{equation*}
$$

since $\int_{0}^{T} e(t) d t=0$. Therefore, form $\left(H_{1}\right)$, we deduce

$$
-K T \leq \int_{0}^{T} g(t, x(t)) d t \leq K T
$$

From $\left(H_{4}\right)$, we know that there exist two point $\tau, \eta \in(0, T)$ such that

$$
\begin{equation*}
x(\tau) \geq D_{2}, \quad 0<x(\eta) \leq D_{1} \tag{5.4}
\end{equation*}
$$

since $x(t)$ is a $T$-periodic function and $x(t)>0$. Hence, from (4.4) and (5.4), we get

$$
\begin{equation*}
|x(t)| \leq D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t \tag{5.5}
\end{equation*}
$$

From (5.3), $\left(H_{1}\right)$ and $\left(H_{5}\right)$, we get

$$
\begin{align*}
\int_{0}^{T}|g(t, x(t))| d t & =\int_{g(t, x(t)) \geq 0} g(t, x(t)) d t-\int_{g(t, x(t)) \leq 0} g(t, x(t)) d t \\
& =2 \int_{g(t, x(t)) \geq 0} g(t, x(t)) d t+\int_{0}^{T} f\left(t, x^{\prime}(t)\right) d t  \tag{5.6}\\
& \leq 2 \int_{0}^{T}\left(\alpha x^{p-1}+\beta\right) d t+\int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t \\
& \leq 2 \alpha T\|x\|^{p-1}+2 \beta T+K T
\end{align*}
$$

From $\left(H_{1}\right),(4.6),(5.5)$ and (5.6), we have

$$
\begin{align*}
\int_{0}^{T}\left|(A x)^{\prime}(t)\right|^{p} d t \leq & \left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}|g(t, x(t))| d t \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\| \int_{0}^{T}|e(t)| d t \\
\leq & \left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\|\left(2 \alpha T\|x\|^{p-1}+2 \beta T+K T\right) \\
& +\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right) K T\|x\|+\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|e\| T\|x\|  \tag{5.7}\\
\leq & 2 \alpha T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\|x\|^{p}+N_{2}\|x\| \\
\leq & 2 \alpha T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\left(D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p} \\
& +N_{2}\left(D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)
\end{align*}
$$

where $N_{2}:=\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)(2 \beta T+2 K T+\|e\| T)$. From (4.9) and (5.7), we see that

$$
\begin{aligned}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq & \sigma T^{\frac{1}{q}}\left(\int_{0}^{T}\left|\left(A x^{\prime}\right)(t)\right|^{p} d t\right)^{\frac{1}{p}}+\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\|x\| \\
\leq & \sigma T^{\frac{1}{q}}\left(2 \alpha T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}\left(D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right) \\
& +\sigma T^{\frac{1}{q}} N_{2}^{\frac{1}{p}}\left(D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{\frac{1}{p}}+\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\left(D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right) \\
= & \frac{1}{2} \sigma T\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{\frac{1}{p}}+\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\right) \int_{0}^{T}\left|x^{\prime}(t)\right| d t \\
& +\sigma T^{\frac{1}{q}} N_{2}^{\frac{1}{p}} 2^{-\frac{1}{p}}\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{\frac{1}{p}}+\sigma T D_{1}\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)
\end{aligned}
$$

Since

$$
\frac{1}{2} \sigma T\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{\frac{1}{p}}+\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\right)<1
$$

it is easy to see that there exists a constant $M_{3}^{\prime}>0$ (independent of $\lambda$ ) such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq M_{3}^{\prime} \tag{5.8}
\end{equation*}
$$

From (5.5) and (5.8), we have

$$
\begin{equation*}
\|x\| \leq D_{1}+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s \leq D_{1}+\frac{1}{2} M_{3}^{\prime}:=M_{3} \tag{5.9}
\end{equation*}
$$

From (4.13), (4.14) and (5.9), we can get there exists a constant $M_{3}^{*}$, such that, for all $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\left\|x^{\prime}\right\| \leq M_{3}^{*} \tag{5.10}
\end{equation*}
$$

On the other hand, multiplying both sides of (5.4) by $x^{\prime}(t)$, we get

$$
\begin{equation*}
\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime} x^{\prime}(t)+\lambda f\left(t, x^{\prime}(t)\right) x^{\prime}(t)+\lambda\left(g_{1}(t, x)+g_{0}(x)\right) x^{\prime}(t)=\lambda e(t) x^{\prime}(t) \tag{5.11}
\end{equation*}
$$

since $g(t, x)=g_{0}(x)+g_{1}(t, x)$. Let $\tau \in[0, T]$ be as in (5.4), for any $\tau \leq t \leq T$, we integrate (5.11) on $[\tau, t]$ and get

$$
\begin{aligned}
\lambda \int_{\tau}^{t} g_{0}(x) x^{\prime}(t) d t= & -\int_{\tau}^{t}\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime} x^{\prime}(t) d t-\lambda \int_{\tau}^{t} f\left(t, x^{\prime}(t)\right) x^{\prime}(t) d t \\
& -\lambda \int_{\tau}^{t} g_{1}(t, x) x^{\prime}(t) d t+\lambda \int_{\tau}^{t} e(t) x^{\prime}(t) d t
\end{aligned}
$$

Furthermore, we obtain

$$
\begin{aligned}
\lambda\left|\int_{x(\tau)}^{x(t)} g_{0}(u) d u\right| \leq & \int_{\tau}^{t}\left|\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}\right|\left|x^{\prime}(t)\right| d t+\lambda \int_{\tau}^{t} \mid f\left(t, x^{\prime}(t) \| x^{\prime}(t) \mid d t\right. \\
& +\lambda \int_{\tau}^{t}\left|g_{1}(t, x)\left\|x^{\prime}(t)\left|d t+\lambda \int_{\tau}^{t}\right| e(t)\right\| x^{\prime}(t)\right| d t
\end{aligned}
$$

From (5.6), (5.9) and (5.10), and applying $\left(H_{1}\right)$, we have

$$
\begin{aligned}
& \int_{\tau}^{t}\left|\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}\right|\left|x^{\prime}(t)\right| d t \\
= & \left\|x^{\prime}\right\| \int_{\tau}^{t}\left|\left(\phi_{p}(A x)^{\prime}(t)\right)^{\prime}\right| d t \\
\leq & \left\|x^{\prime}\right\|\left(\lambda \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t+\lambda \int_{0}^{T}|g(t, x)| d t+\lambda \int_{0}^{T}|e(t)| d t\right) \\
\leq & \lambda M_{3}^{*}\left(2 K T+2 \alpha T\|x\|^{p-1}+2 \beta T+T\|e\|\right) \\
\leq & \lambda M_{3}^{*}\left(2 K T+2 \alpha T\left(M_{3}\right)^{p-1}+2 \beta T+\|e\| T\right) .
\end{aligned}
$$

From (5.9) and (5.10), applying $\left(H_{1}\right)$, we see that

$$
\int_{\tau}^{t}\left|f\left(t, x^{\prime}(t)\right)\right|\left|x^{\prime}(t)\right| d t \leq M_{3}^{*} \int_{0}^{T}\left|f\left(t, x^{\prime}(t)\right)\right| d t \leq M_{3}^{*} K T
$$

$$
\int_{\tau}^{t}\left|g_{1}(t, x)\left\|x^{\prime}(t)\left|d t \leq \int_{0}^{T}\right| g_{1}(t, x)\right\| x^{\prime}(t)\right| d t \leq\left\|g_{M_{3}}\right\| M_{3}^{*} T
$$

where $\left\|g_{M_{3}}\right\|:=\max _{0<x(t) \leq M_{3}}\left|g_{1}(t, x)\right|$.

$$
\int_{\tau}^{t}\left|e(t)\left\|x^{\prime}(t)\left|d t \leq \int_{0}^{T}\right| e(t)\right\| x^{\prime}(t)\right| d t \leq\|e\| M_{3}^{*} T .
$$

From the above inequalities, we get

$$
\left|\int_{x(\tau)}^{x(t)} g_{0}(u) d u\right| \leq M_{3}^{*}\left(2 \alpha T\left(M_{3}\right)^{p-1}+2 \beta T+3 K T+2 T\|e\|+\left\|g_{M_{1}}\right\| T\right) .
$$

In view of strong condition (5.1), we know there exists a constant $M_{4}>0$ such that

$$
\begin{equation*}
x(t) \geq M_{4}, \quad \forall t \in[\tau, T] . \tag{5.12}
\end{equation*}
$$

The case $t \in[0, \tau]$ can be treated similarly.
From (5.9), (5.10) and (5.12), we have

$$
\Omega=\left\{x \in C_{T}^{1}(\mathbb{R}, \mathbb{R}) \mid G_{1} \leq x \leq G_{2},\left\|x^{\prime}\right\| \leq G_{3}, \forall t \in[0, T]\right\},
$$

where $0<G_{1}<\min \left(M_{4}, D_{2}\right), G_{2}>\max \left(M_{3}, D_{1}\right), G_{3}>M_{3}^{*}$.
The proof left is the same as Theorem 4.1.

## 6. Examples

Example 6.1. Consider the $p$-Laplacian neutral Rayleigh equation in the case that $\sum_{i=1}^{n}\left\|c_{i}\right\|<1$,

$$
\begin{align*}
& \left(\phi_{p}\left(x(t)-\left(\frac{1}{40} \sin \left(4 t-\frac{\pi}{3}\right) x\left(t-\delta_{1}\right)+\frac{1}{60} \cos \left(4 t+\frac{\pi}{4}\right) x\left(t-\delta_{2}\right)\right)\right)^{\prime}\right)^{\prime}  \tag{6.1}\\
& +\cos ^{2}(2 t) \sin x^{\prime}(t)+\frac{1}{40}(2+\cos 4 t) x^{2}(t)=\cos ^{2}(2 t),
\end{align*}
$$

where $p=3, \delta_{1}, \delta_{2}$ are constants and $0<\delta_{1}, \delta_{2}<T$.
Comparing (6.1) to (4.1), it is easy to see that $c_{1}(t)=\frac{1}{40} \sin \left(4 t-\frac{\pi}{3}\right), c_{2}(t)=$ $\frac{1}{60} \cos \left(4 t+\frac{\pi}{4}\right), f(t, u)=\cos ^{2}(2 t) \sin u, g(t, x(t))=\frac{1}{40}(2+\cos 4 t) x^{2}(t), e(t)=$ $\cos ^{2}(2 t), T=\frac{\pi}{2}$. Choose $K=1, D=1$, it is obvious that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Consider $|g(t, x(t))|=\left|\frac{1}{40}(2+\cos 4 t) x^{2}(t)\right| \leq \frac{3}{40}|x|^{2}(t)+1$, here $a=\frac{3}{40}, b=1$. So, condition $\left(H_{3}\right)$ is satisfied. $\left\|c_{1}\right\|=\frac{1}{40},\left\|c_{2}\right\|=\frac{1}{60}$. So, we have $\sum_{i=1}^{2}\left\|c_{i}\right\|=$ $\left\|c_{1}\right\|+\left\|c_{2}\right\|=\frac{5}{12}<1 . \sigma=\frac{1}{1-\left\|c_{1}\right\|-\left\|c_{2}\right\|}=\frac{12}{7} .\left\|c_{1}^{\prime}\right\|=\frac{1}{10}$ and $\left\|c_{2}^{\prime}\right\|=\frac{1}{15}$. Next, we consider the condition

$$
\sigma T^{\frac{1}{q}} \frac{\left(a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}}{2}+\frac{\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|}{2}
$$

$$
\begin{aligned}
& =\frac{12}{7} \times\left(\frac{\pi}{2}\right)^{\frac{2}{3}} \times \frac{\left(\frac{3}{40} \times \frac{\pi}{2} \times \frac{17}{12}\right)^{\frac{1}{3}}}{2}+\frac{\frac{12}{7} \times \frac{\pi}{2} \times \frac{1}{6}}{2} \\
& \approx 0.8621<1
\end{aligned}
$$

Therefore, by Theorem 4.1, we know that (6.1) has at least one $\frac{\pi}{2}$-periodic solution.

Example 6.2. Consider the $p$-Laplacian neutral Rayleigh equation in the case that $\sum_{i=1}^{n}\left\|c_{i}\right\|>1$,

$$
\begin{align*}
& \left(\phi_{p}\left(x(t)-\left(\left(\frac{1}{8} \cos \left(8 t+\frac{\pi}{6}\right)+\frac{15}{8}\right) x\left(t-\delta_{3}\right)+\frac{1}{64} \sin (8 t) x\left(t-\delta_{4}\right)\right)\right)^{\prime}\right)^{\prime}  \tag{6.2}\\
& +2 \sin ^{2}(4 t) \sin x^{\prime}(t)+\frac{1}{16}(2-\cos 8 t) x^{4}(t)=\sin \left(8 t-\frac{\pi}{4}\right)
\end{align*}
$$

where $p=5, \delta_{3}, \delta_{4}$ are constants and $0<\delta_{3}, \delta_{4}<T$. Comparing (6.2) to (4.1), it is easy to see that $c_{1}(t)=\left(\frac{1}{8} \cos 8 t+\frac{\pi}{6}\right)+\frac{15}{8}, c_{2}=\frac{1}{64} \sin (8 t) f(t, u)=2 \sin ^{2}(4 t) \sin u$, $g(t, x(t))=\frac{1}{16}(2+\sin 8 t) x^{4}(t), e(t)=\cos \left(8 t-\frac{\pi}{4}\right) . T=\frac{\pi}{4}$. It is easy to see that there exist a constant $K=1$ and $D=1$ such that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Consider $|g(t, x(t))|=\left|\frac{1}{16}(2+\sin 8 t) x^{4}(t)\right| \leq \frac{3}{16}|x|^{4}(t)+1$, here $a=\frac{3}{16}, b=1$. So, condition $\left(H_{3}\right)$ is satisfied. $\left\|c_{1}\right\|=\frac{1}{8}+\frac{15}{8}=2,\left\|c_{2}\right\|=\frac{1}{64}$, so, we have $\sum_{i=1}^{2}\left\|c_{i}\right\|=\left\|c_{1}\right\|+\left\|c_{2}\right\|=$ $\frac{129}{64}>1, \sigma=\frac{\frac{1}{\left\|c_{k}\right\|}}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|} \approx \frac{\frac{1}{2}}{1-\frac{1}{2}-0.0086} \approx 1.0175 .\left\|c_{1}^{\prime}\right\|=1$ and $\left\|c_{2}^{\prime}\right\|=\frac{1}{8}$. Next, we consider the condition

$$
\begin{aligned}
& \sigma T^{\frac{1}{q}} \frac{\left(a T\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)\right)^{\frac{1}{p}}}{2}+\frac{\sigma T \sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|}{2} \\
= & 1.0175 \times\left(\frac{\pi}{4}\right)^{\frac{4}{5}} \times \frac{\left(\frac{3}{16} \times \frac{\pi}{4} \times \frac{193}{64}\right)^{\frac{1}{5}}}{2}+\frac{1.0175 \times \frac{\pi}{4} \times\left(1+\frac{1}{8}\right)}{2} \\
\approx & 0.8060<1 .
\end{aligned}
$$

Therefore, by Theorem 4.1, we know that (6.2) has at least one $\frac{\pi}{4}$-periodic solution.

Example 6.3. Consider the following $p$-Laplacian singular neutral Rayleigh equation in the case that $\sum_{i=1}^{n}\left\|c_{i}\right\|<1$

$$
\begin{align*}
& \left(\phi _ { p } \left(x(t)-\left(\left(\frac{1}{16} \cos \left(16 t+\frac{\pi}{4}\right)\right) x\left(t-\delta_{1}\right)+\frac{1}{48} \sin (16 t) x\left(t-\delta_{2}\right)\right.\right.\right. \\
& \left.\left.\left.+\frac{1}{48} \cos \left(16 t-\frac{\pi}{48}\right) x\left(t-\delta_{3}\right)\right)\right)^{\prime}\right)^{\prime}+\frac{1}{100 \pi}(1+\sin (16 t)) \sin x^{\prime}(t)  \tag{6.3}\\
& +\frac{1}{16}\left(\frac{3}{4}+\frac{1}{2} \cos 16 t\right) x^{3}(t)-\frac{1}{x^{\mu}}=\cos ^{2}(8 t)
\end{align*}
$$

where $p=4, \mu \geq 1, \delta_{1}, \delta_{2}$ and $\delta_{3}$ are constants and $0<\delta_{1}, \delta_{2}, \delta_{3}<T$.

Comparing (6.3) to (4.1), it is easy to see that $c_{1}(t)=\frac{1}{16} \cos \left(16 t+\frac{\pi}{4}\right), c_{2}(t)=$ $\frac{1}{48} \sin (16 t), c_{3}=\frac{1}{48} \cos \left(16 t-\frac{\pi}{48}\right), f(t, u)=\frac{1}{100 \pi}(1+\sin (8 t)) \sin u, g(t, x(t))=$ $\frac{1}{16}\left(\frac{3}{4}+\cos 8 t\right) x^{3}(t)-\frac{1}{x^{\mu}}, e(t) \stackrel{\cos ^{2}(4 t) .}{=}=\frac{\pi}{8} .\left\|c_{1}\right\|=\frac{1}{16},\left\|c_{2}\right\|=\frac{1}{48}$ and $\left\|c_{3}\right\|=\frac{1}{48}$, so, we have $\sum_{i=1}^{3}\left\|c_{i}\right\|=\frac{5}{48}<1, \sigma=\frac{1}{1-\sum_{i=1}^{3}\left\|c_{i}\right\|}=\frac{1}{1-\frac{1}{16}-\frac{1}{48}-\frac{1}{48}}=\frac{48}{43}$. $\left\|c_{1}^{\prime}\right\|=1,\left\|c_{2}^{\prime}\right\|_{1}=\frac{1}{3}$ and $\left\|c_{3}^{\prime}\right\|=\frac{1}{3}$. It is easy to see that there exist a constant $K=1, D_{2}=\frac{1}{2}$ and $D_{1}=5$ such that $\left(H_{1}\right)$ and $\left(H_{4}\right)$ hold. Besides, $g(t, x(t))=$ $\frac{1}{16}\left(\frac{3}{4}+\cos 16 t\right) x^{3}(t)-\frac{1}{x^{\mu}}$, we obtain $\alpha=\frac{5}{64}$ and $\beta=1$. Then, condition $\left(H_{5}\right)$ holds. Next, we consider the condition

$$
\begin{aligned}
& \frac{1}{2} \sigma T\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{\frac{1}{p}}+\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\right) \\
= & \frac{1}{2} \times \frac{\pi}{8} \times \frac{48}{43}\left(2^{\frac{1}{4}} \times\left(\frac{5}{64}\right)^{\frac{1}{4}} \times\left(\frac{53}{48}\right)^{\frac{1}{4}}+1+\frac{1}{3}+\frac{1}{3}\right) \\
\approx & 0.5065<1 .
\end{aligned}
$$

Therefore, by Theorem 5.1, we know that (6.3) has at least one positive $\frac{\pi}{8}$ periodic solution.
Example 6.4. Consider the following $p$-Laplacian singular neutral Rayleigh equation in the case that $\sum_{i=1}^{n}\left\|c_{i}\right\|>1$

$$
\begin{align*}
& \left(\phi_{p}\left(x(t)-\left(2 x\left(t-\delta_{1}\right)+\frac{1}{36} \cos ^{2}(3 t) x\left(t-\delta_{2}\right)-\frac{1}{24} \cos \left(6 t+\frac{\pi}{18}\right) x\left(t-\delta_{3}\right)\right)\right)^{\prime}\right)^{\prime} \\
& +\frac{1}{325}\left(\frac{1}{4}+\frac{1}{8} \cos (6 t)\right) \sin \left(x^{\prime}(t)\right)^{4}+\frac{1}{125 \pi}\left(\frac{1}{2}+\frac{1}{2} \sin (6 t)\right) x^{4}(t)-\frac{1}{x^{\mu}}=\cos \left(6 t+\frac{\pi}{4}\right) \tag{6.4}
\end{align*}
$$

where $p=5, \mu \geq 1, \delta_{1}, \delta_{2}$, and $\delta_{3}$ are constants and $0<\delta_{1}, \delta_{2}, \delta_{3}<T$.
Comparing (6.4) to (4.1), it is easy to see that $c_{1}(t)=2, c_{2}=\frac{1}{36} \cos ^{2}(3 t) x\left(t-\delta_{2}\right)$, $c_{3}(t)=-\frac{1}{24} \cos \left(6 t+\frac{\pi}{18}\right) x\left(t-\delta_{3}\right) . f(t, u)=\frac{1}{40 \pi}\left(\frac{1}{4}+\frac{5}{2} \cos (6 t)\right) \sin u^{4}, g(t, x(t))=$ $\frac{1}{125 \pi}\left(\frac{1}{2}+\frac{1}{2} \sin (6 t)\right) x^{4}(t)-\frac{1}{x^{\mu}}, e(t)=\sin \left(6 t-\frac{\pi}{4}\right) . T=\frac{\pi}{3} .\left\|c_{1}\right\|=2,\left\|c_{2}\right\|=\frac{1}{36}$ and $\left\|c_{3}\right\|=\frac{1}{24}$, so we have $\sum_{i=1}^{3}\left\|c_{i}\right\|=\frac{149}{72}>1, \sigma=\frac{\frac{1}{\left\|c_{k}\right\|}}{1-\frac{1}{\left\|c_{k}\right\|}-\sum_{i=1, i \neq k}^{n}\left\|\frac{c_{i}}{c_{k}}\right\|}=\frac{\frac{1}{2}}{1-\frac{1}{2}-\frac{1}{36}} \frac{\frac{1}{24}}{\frac{24}{2}}=$ $\frac{72}{67}$. $\left\|c_{1}^{\prime}\right\|=0,\left\|c_{2}^{\prime}\right\|=\frac{1}{1^{2}}$ and $\left\|c_{3}^{\prime}\right\|=\frac{1}{4}$. It is easy to see that there exist a constant $K=1, D_{2}=\frac{1}{4}$ and $D_{1}=7$ such that $\left(H_{1}\right)$ and $\left(H_{4}\right)$ hold. Besides, $g(t, x(t))=\frac{1}{125 \pi}\left(\frac{1}{2}+\frac{1}{2} \sin (6 t)\right) x^{4}(t)-\frac{1}{x^{\mu}}$, we obtain $\alpha=\frac{1}{125 \pi}$ and $\beta=1$. Then condition $\left(H_{5}\right)$ is satisfied. Next, we consider the condition

$$
\begin{aligned}
& \frac{1}{2} \sigma T\left(2^{\frac{1}{p}} \alpha^{\frac{1}{p}}\left(1+\sum_{i=1}^{n}\left\|c_{i}\right\|\right)^{\frac{1}{p}}+\sum_{i=1}^{n}\left\|c_{i}^{\prime}\right\|\right) \\
= & \frac{1}{2} \times \frac{\pi}{3} \times \frac{72}{67}\left(2^{\frac{1}{5}} \times\left(\frac{1}{125 \pi}\right)^{\frac{1}{5}} \times\left(\frac{221}{72}\right)^{\frac{1}{5}}+0+\frac{1}{12}+\frac{1}{4}\right)
\end{aligned}
$$

$$
\approx 0.4303<1
$$

Therefore, by Theorem 5.1, we know that (6.4) has at least one positive $\frac{\pi}{3}$ periodic solution.

Acknowledgements. The authors are grateful to the anonymous referees for their useful suggestions which improve the contents of this article.

## References

[1] A. Anane, O. Chakrone and L. Moutaouekkil, Periodic solutions for pLaplacian neutral functional differential equations with multiple deviating arguments, Electron. J. Differential Equations, 2012, 148, 1-12.
[2] A. Ardjouni and A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(7), 3061-3069.
[3] B. Bacoća, B. Dorociaková and R. Olach, Existence of positive solutions of nonlinear neutral differential equations asymptotic to zero, Rocky Mountain J. Math., 2012, 42(5), 1421-1430.
[4] Z. Cheng, J. Ren, Existence of periodic solution for fourth-order Liénard type p-Laplacian generalized neutral differential equation with variable parameter, J. Appl. Anal. Comput., 2015, 5(4), 704-720.
[5] B. Du, L. Guo, W. Ge and S. Lu, Periodic solution for generalized Liénard neutral equation with variable parameter, Nonlinear Anal. TMA, 2009, 70(6), 2387-2394.
[6] B. Du, Periodic solution to p-Laplacian neutral Liénard type equation with variable parameter, Math. Slovaca, 2013, 63(2), 381-395.
[7] F. Gao and W. Zhang, Periodic solutions for a p-Laplacian-like NFDE system, J. Franklin Inst., 2011, 348(6), 1020-1034.
[8] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Equations, Springer, Berlin, 1977.
[9] W. Ge and J. Ren, An extension of Mawhin's continuation and its application to boundary value problems with a p-Laplacian, Nonlinear Anal., 2004, 58(3-4), 447-488.
[10] F. Kong, S. Lu and Z. Liang, Existence of positive periodic solutions for neutral Liénard differential equations with a singularity, Electron. J. Differential Equations, 2015, 242, 1-12.
[11] Y. Li and B. Liu, Periodic solutions of dissipative neutral differential systems with singular potential and p-Laplacian, Studia Sci. Math. Hungar., 2008, 45(2), 251-271.
[12] S. Lu and W. Ge, Existence of periodic solutions for a kind of second-order neutral function differential equation, Appl. Math Comput., 2004, 157(2), 433448.
[13] S. Lu, Existence of periodic solutions for a p-Laplacian neutral functional differential equation, Nonlinear Anal. TMA, 2009, 70(1), 231-243.
[14] R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 1998, 145(2), 367-393.
[15] S. Peng, Periodic solutions for p-Laplacian neutral Rayleigh equation with a deviating argument, Nonlinear Anal., 2008, 69(5-6), 1675-1685.
[16] K. Wang and Y. Zhu, Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation, J. Franklin Inst., 2010, 347(7), 1158-1170.
[17] J. Wu and Z. Wang, Two periodic solutions of second-order neutral functional differential equations, J. Math. Anal. Appl., 2007, 329(1), 677-689.
[18] Y. Xin and Z. Cheng, Study on a kind of neutral Rayleigh equation with singularity, Bound. Value Probl., 2017, 2017(92), 1-11.
[19] T. Xiang and R. Yuan, Existence of periodic solutions for p-Laplacian neutral functional equation with multiple deviating arguments, Topol. Methods Nonlinear Anal., 2011, 37(2), 235-258.
[20] M. Zhang, Periodic solutions of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl., 1995, 189(2), 378-392
[21] Y. Zhu and S. Lu, Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments, J. Math. Anal. Appl., 2007, 325(1), 377-385.


[^0]:    $\dagger$ the corresponding author. Email address: czb_1982@126.com (Z. Cheng)
    ${ }^{1}$ School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
    ${ }^{2}$ Department of Mathematics, Sichuan University, Chengdu, 610064, China
    *Fundamental Research Funds for National Natural Science Foundation of China (11501170), China Postdoctoral Science Foundation funded project (2016M590886) and the Universities of Henan Provience (NSFRF170302).

