Volume 8, Number 6, 2018, Pages 1707-1726 DOI:10.11948/2018.1707 |
Asymptotic behavior of nabla half order $h$-difference equations |
Baoguo Jia,Feifei Du,Lynn Erbe,Allan Peterson |
Keywords:Laplace transform, Mittag-Leffler function, Riemann-Liouville fractional $h$-difference, oscillation. |
Abstract: |
In this paper we study the half order nabla fractional difference equation $ _{\rho(a)}\nabla^{0.5}_{h}x(t)=cx(t), ~ t\in(h\N)_{a+h},$ where $_{\rho(a)}\nabla^{0.5}_hx(t)$ denotes the Riemann-Liouville nabla half order $h$-difference of $x(t)$. We will establish the asymptotic behavior of the solutions of this equation satisfying $x(a)=A>0$ for various values of the constant $c$. |
PDF Download reader
|
|
|
|