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ASYMPTOTIC BEHAVIOR OF NABLA HALF
ORDER H-DIFFERENCE EQUATIONS∗
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Abstract In this paper we study the half order nabla fractional difference
equation ρ(a)∇0.5

h x(t) = cx(t), t ∈ (hN)a+h, where ρ(a)∇0.5
h x(t) denotes the

Riemann-Liouville nabla half order h-difference of x(t). We will establish the
asymptotic behavior of the solutions of this equation satisfying x(a) = A > 0
for various values of the constant c.

Keywords Laplace transform, Mittag-Leffler function, Riemann-Liouville frac-
tional h-difference, oscillation.
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1. Introduction

Discrete fractional calculus has generated interest in recent years. Some of the work
has employed the forward or delta difference. We refer the readers to [3, 14, 15, 17]
for example, and more recently [5, 6, 11, 16, 20]. Probably more work has been
developed for the backward or nabla difference and we refer the readers [1, 9, 10, 13].
There has been some work to develop relations between the forward and backward
fractional operators, ∆ν and ∇ν [4] and fractional calculus on time scales [7, 8].

From [9], we know that if c ∈ (0, 1)∪ (1,
√

2), then the trivial solution of the half
order nabla fractional difference equation (NFDE)

0∇0.5x(t) = cx(t), c 6= 1, t ∈ N2 (1.1)

is unstable. If c ∈ (−∞, 0]∪(
√

2,+∞), then the trivial solution of (1.1) is asymptotic
stable. However, when c =

√
2, the asymptotic stability of the trivial solution of

(1.1) is still an open problem in [9]. In the book [12, Chapter 6] (Proposition 4.4,
Page 140), the authors (J. Čermák and T. Kisela) generalized the corresponding
results to h-difference equations and solved that open problem.

In this paper, we will further investigate the asymptotic behavior of the frac-
tional initial value problem

ρ(a)∇0.5
h x(t) = cx(t), x(a) = A > 0, ch0.5 6= 1, t ∈ (hN)a+h, (1.2)
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and obtain the new results that as a special case (ν = 0.5, h = 1), qualitative prop-
erties of (1.1) are different when c ∈ (0, 1) and c ∈ (1,

√
2) (see detail, Remark 1.1),

qualitative properties of (1.1) are different when c ∈ (−∞, 0] and c ∈ (
√

2,+∞)(see
detail, Remark 1.2).

It is worth mentioning that in the case c =
√

2, we also solved that open problem,
i.e. solutions of (1.1) are stable (and oscillatory), however, our techniques are
different from their methods.

To the best of author’s observation, however, few papers ([2, 18]) have been
published in literature regarding the oscillation of solutions for fractional difference
equations. A primary purpose of this paper is to establish one explicit oscillation
criterion for a type of linear fractional difference equations involving the Riemann-
Liouville’s operator. Two numerical examples are provided to demonstrate the
effectiveness of the main theorems.

Consider the solutions of initial value problem for the NFDE

ρ(a)∇νhx(t) = cx(t), x(a) = A > 0, chν 6= 1, t ∈ (hN)a+h, (1.3)

where (hN)a+h := {a + h, a + 2h, · · · } and ρ(a)∇νhx(t) denotes Riemann-Liouville
nabla h-difference of x(t) on sets (hN)a := {a, a + h, a + 2h, · · · }. In this paper,
we will discuss the asymptotic behavior of the solutions of (1.3). The following
Theorem is obtained.

Theorem A. Assume c > 0, ch0.5 6= 1. Then the unique solution of the fractional
initial value problem (1.2) satisfies
(i) When 0 < c < 1

h0.5 ,
lim
n→∞

x(a+ nh) = +∞.

(ii) When 1
h0.5 < c <

(
2
h

)0.5

,

lim sup
n→∞

x(a+ nh) = +∞, lim inf
n→∞

x(a+ nh) = −∞.

(iii) When c =
(

2
h

)0.5

,

lim sup
n→∞

x(a+ nh) = 2
√

2(
√

2− 1)A, lim inf
n→∞

x(a+ nh) = −2
√

2(
√

2− 1)A.

(iv) When c >
(

2
h

)0.5

,

lim
n→∞

x(a+ nh) = 0.

In the following two remarks we compare our results to the known results in the
literature.

Remark 1.1. From the reference [12, Chapter 6], we know when 0 < c < ( 1
h )0.5 or

( 1
h )0.5 < c < ( 2

h )0.5,
lim
n→∞

|x(a+ nh)| =∞.

However, qualitative properties of (1.2) are different when 0 < c < ( 1
h )0.5 and

( 1
h )0.5 < c < ( 2

h )0.5. From [19] (for h = 1, but the technique is valid for h > 0
and h 6= 1), we know when 0 < c < ( 1

h )0.5, the solution x(t) of (1.2) is positive
and tends to infinity. But from this paper, we know when ( 1

h )0.5 < c < ( 2
h )0.5, the

solution x(t) of (1.2) is oscillatory and tends to infinity.
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Remark 1.2. From the reference [12, Chapter 6], we know when c ≤ 0 or c >
( 2
h )0.5,

lim
n→∞

x(a+ nh) = 0.

However, qualitative properties of (1.2) are different when c ≤ 0 and c > ( 2
h )0.5.

From [19] (for h = 1, but the technique is valid for h > 0 and h 6= 1), we know
when c ≤ 0, the solution of (1.2) is positive and tends to zero. But from this paper,
we know when c > ( 2

h )0.5, for large t, the solution x(t) of (1.2) is negative and is
increasing to zero.

2. Preliminaries

For any real number z, we define the exponential function, Ez(t, a), to be the unique
solution of the initial value problem (IVP)

∇hy(t) = zy(t), t ∈ (hN)a+h, y(a) = 1.

It is easy to see that y(t) = (1− zh)−1y(t− h) and it follows that

Ez(t, a) = (1− zh)−
t−a
h .

Also if we define the box difference by

�z = − z

1− zh
,

then

E�z(t, a) = (1− zh)
t−a
h .

Consequently, for any function x : (hN)a+h → R, its nabla h-Laplace transform
has the form

La{x}(z) =

∫ ∞
a

E�z(ρ(t), a)x(t)∇ht =

∫ ∞
a

(1− zh)
t−h−a
h x(t)∇ht

= h

∞∑
k=1

(1− zh)k−1x(a+ kh).

Lemma 2.1. Assume x : (hN)a+h → R. Then

La{x}(z) = h

∞∑
k=1

(1− zh)k−1x(a+ kh), (2.1)

for those values of z such that this infinite series converges.

Remark 2.1.

La{1}(z) = h

∞∑
k=1

(1− zh)k−1 =
h

1− (1− zh)
=

1

z
,

for |1− zh| < 1, which is a standard formula.
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Definition 2.1. Let ν 6= −1,−2,−3, · · · . Then we difine the ν-th order nabla
fractional h-Taylor monomial, Ĥν(t, a), by

Ĥν(t, a) =
(t− a)νh
Γ(ν + 1)

= hν
Γ( t−ah + ν)

Γ(ν + 1)Γ( t−ah )
,

where t ∈ (hN)a.

Definition 2.2 (Nabla Fractional Sum). Let x : (hN)a+h → R and ν > 0 be given.
The ν-th order h-sum with staring point a is given by

a∇−νh x(t) =

∫ t

a

Ĥν−1(t, ρ(τ))x(τ)∇hτ =
1

Γ(ν)

∫ t

a

(t− ρ(τ))ν−1
h x(τ)∇hτ, (2.2)

for t ∈ (hN)a, where by convention a∇−νh x(a) = 0 and ρ(τ) = τ − h, the h-rising
factorial function is defined as

tνh = hν
Γ( th + ν)

Γ( th )
, t, ν ∈ R.

Definition 2.3 (Riemann-Liouville fractional difference). For x(t) defined on (hN)a
and m − 1 < ν < m, where m denotes a positive integer, m = dνe, where d·e is
the ceiling of function. The ν-th Riemann-Liouville nabla fractional difference is
defined as

a∇νhx(t) = ∇mh a∇
−(m−ν)
h x(t), (2.3)

for t ∈ (hN)a+mh.

The proof of the following lemma is different from [16, Theorem 3.74].

Lemma 2.2.

La{Ĥν(·, a)}(z) =
1

zν+1
,

for |zh− 1| < 1.

Proof.

La{Ĥν(·, a)}(z) = h

∞∑
k=1

(1− zh)k−1Ĥν(a+ kh, a)

= h

∞∑
k=1

(1− zh)k−1hν
Γ(k + ν)

Γ(ν + 1)Γ(k)

= h1+ν
∞∑
k=1

(1− zh)k−1 (k + ν − 1)(k + ν − 2) · · · (ν + 1)

(k − 1)!

= h1+ν
∞∑
k=0

(1− zh)k
(k − 1 + ν + 1)(k − 2 + ν + 1) · · · (ν + 1)

k!

= h1+ν [1− (1− zh)]−(ν+1) =
1

zν+1
,

for |1− zh| < 1, where we use

[1− (1− sh)]−(ν+1) =

∞∑
k=0

[−(ν + 1)][−(ν + 1)− 1] · · · [−(ν + 1)− k + 1]

k!
[−(1− zh)]k
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=

∞∑
k=0

(ν + 1)(ν + 2) · · · (ν + k)

k!
(1− zh)k.

Definition 2.4. For f, g : (hN)a+h → R, we define the nabla convolution product
of f and g by

(f ∗ g)(t) :=

∫ t

a

f(t− ρ(τ) + a)g(τ)∇hτ = h

n∑
k=1

f((n− k + 1)h+ a)g(a+ kh),

where t = a+ nh, n = 1, 2, · · · .

Lemma 2.3 (Convolution Theorem). Assume f, g : (hN)a+h → R and their nabla
h-Laplace transforms converge for |1− zh| < r for some r > 0. Then

La{f ∗ g}(z) = La{f}(z) · La{g}(z),

for |1− zh| < r.

Lemma 2.4. Assume ν ∈ R \ {0,−1,−2, · · · } and f : (hN)a+h → R. Then

a∇−νh f(t) = (Ĥν−1(·, a) ∗ f)(t),

for t ∈ (hN)a+h.

Proof.

(Ĥν−1(·, a) ∗ f)(t) =

∫ t

a

Ĥν−1(t− ρ(τ) + a, a)f(τ)∇hτ

=

∫ t

a

Ĥν−1(t, ρ(τ))f(τ)∇hτ =a ∇−νh f(t).

Lemma 2.5. Assume the nabla h-Laplace transform of f : (hN)a+h → R converges
for |1− zh| < r for some r > 0. Then

La{∇hf}(z) = zLa{f}(z)− f(a),

for |1− zh| < r.

Proof.

La{∇hf}(z) = h

∞∑
k=1

(1− zh)k−1∇hf(a+ kh)

=

∞∑
k=1

(1− zh)k−1[f(a+ kh)− f(a+ kh− h)]

=
1

h
La{f}(z)−

∞∑
k=1

(1− zh)k−1f(a+ kh− h)

=
1

h
La{f}(z)−

∞∑
k=0

(1− zh)kf(a+ kh)
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=
1

h
La{f}(z)−

1− zh
h
La{f}(z)− f(a)

= zLa{f}(z)− f(a).

Lemma 2.6. Assume the nabla h-Laplace transform of f : (hN)a+h → R converges
for |1− zh| < r for some r > 0. Then

La+h{f}(z) =
La{f}(z)

1− zh
− hf(a+ h)

1− zh
,

for |1− zh| < r.

Proof.

La+h{f}(z) = h

∞∑
k=1

(1− zh)k−1f(a+ h+ kh) = h

∞∑
j=2

(1− zh)j−2f(a+ jh)

= h

∞∑
j=1

(1− zh)j−2f(a+ jh)− hf(a+ h)

1− zh

=
La{f}(z)

1− zh
− hf(a+ h)

1− zh
.

This completes the proof.

Lemma 2.7. Assume ν > 0 and the nabla h-Laplace transform of f : (hN)a+h → R
converges for |1− zh| < r for some r > 0. Then

La{a∇−νh f}(z) =
1

zν
La{f}(z)

for |1− zh| < min{1, r}.

Lemma 2.8. Given f : (hN)a+h → R and 0 < ν < 1. Then we have

La{a∇νhf}(z) = zνLa{f}(z).

Proof. Using Lemma 2.5 and Lemma 2.7 we have that

La{a∇νhf}(z) = La{∇ha∇−(1−ν)
h f}(z) = zLa{a∇−(1−ν)

h f}(z)− a∇−(1−ν)
h f(a)

=
z

z1−ν La{f}(z) = zνLa{f}(z),

where we use a∇−(1−ν)
h f(a) = 0 (Definition 2.2).

Lemma 2.9. Given f : (hN)a+h → R and 0 < ν < 1. Then we have

La+h{a∇νhf}(z) = zνLa+h{f}(z) +
h(zν − h−ν)

1− zh
f(a+ h).
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Proof. From Lemma 2.5, we have

La+h{a∇νhf}(z) = La+h{∇ha∇−(1−ν)
h f}(z)

= zLa+h{a∇−(1−ν)
h f}(z)− a∇−(1−ν)

h f(a+ h).

Using Lemma 2.6, we get that

La+h{a∇−(1−ν)
h f}(z) =

La{a∇−(1−ν)
h f}(z)

1− zh
−
ha∇−(1−ν)

h f(a+ h)

1− zh
.

So

La+h{a∇νhf}(z) =
zLa{a∇−(1−ν)

h f}(z)
1− zh

− a∇−(1−ν)
h f(a+ h)

1− zh

=
zLa{f}(z)
z1−ν(1− zh)

− h1−µf(a+ h)

1− zh

=
zνLa{f}
1− zh

− h1−νf(a+ h)

1− zh
,

where we use

a∇−(1−ν)
h f(a+ h) =

∫ a+h

a

Ĥ−ν(a+ h, ρ(τ))f(τ)∇hτ

= hĤ−ν(a+ h, a)f(a+ h)

= h1−νf(a+ h).

Applying Lemma 2.6 again, we obtain

La+h{a∇νhf}(s) = zνLa+h{f}(z) +
h(zν − h−ν)

1− zh
f(a+ h).

This completes the proof.

3. Behavior of Solutions of ν-th Order Riemann-
Liouville Fractional Difference Equations

Consider the ν order nabla fractional initial value problems

ρ(a)∇νhx(t) = cx(t), x(a) = A, chν 6= 1, t ∈ (hN)a+h. (3.1)

A solution x(t) of (3.1) is said to be oscillatory if for every integer N > 0, there
exists t ≥ N such that x(t)x(t + h) ≤ 0; otherwise it is called nonoscillatory. An
equation is said to be oscillatory if all of its solution are oscillatory.

Definition 3.1. A function f : (hN)a → R is said to be exponential of order r > 0
if there exist a constant M > 0 and a r > 1 such that

|f(t)| ≤Mrt

for t ∈ (hN)a.
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Lemma 3.1. Assume 0 < ν < 1 and 1− hνc 6= 0. If f : (hN)a → R is exponential
bounded, then each solution of the fractional initial value problem

ρ(a)∇νhx(t) = cx(t) + f(t), t ∈ (hN)a+h, x(a) = A ∈ R

is exponential bounded and hence its h-Laplace transform exists.

Proof. Using Leibniz formula, it is easy to get that

ρ(a)∇νhx(t) = ∇hρ(a)∇
−(1−ν)
h x(t) = ∇h

∫ t

ρ(a)

Ĥ−ν(t, ρ(s))x(s)∇hs

=

∫ t

ρ(a)

Ĥ−ν−1(t, ρ(s))x(s)∇hs.

Let t = a+ kh, k ≥ 1. We have

h[Ĥ−ν−1(a+ kh, a− h)x(a) + Ĥ−ν−1(a+ kh, a)x(a+ h) + · · ·
+ Ĥ−ν−1(a+ kh, a+ (k − 1)h)x(a+ kh)]

=cx(a+ kh) + f(a+ kh).

That is

h−ν
[
x(a+ kh)− νx(a+ kh− h)− ν(−ν + 1)

2!
x(a+ kh− 2h)− · · ·

− ν(−ν + 1) · · · (−ν + k − 1)

k!
x(a)

]
=cx(a+ kh) + f(a+ kh).

That is

[1− hνc]x(a+ kh)

=νx(a+ kh− h) +
ν(−ν + 1)

2!
x(a+ kh− 2h) + · · ·

+
ν(−ν + 1) · · · (−ν + k − 1)

k!
x(a) + hνf(a+ kh).

Since f(a+ kh) is exponentially bounded, there is an M > 0 and a r > 1 such that

|f(a+ kh)| ≤Mra+kh,

for k ≥ 1. Taking large numbers R,B with R > r and BRa > |A| and

B >
2Mhν

|1− hνc|
, |1− hνc||Rh − 1| > 2.

We now prove by induction that

|x(a+ kh)| ≤ BRa+kh, (3.2)

for k = 1, 2, · · · . It is easy to see that the inequality (3.2) is true for k = 0. Now
assume that k0 ≥ 1 and that the inequality (3.2) is true for 1 ≤ k ≤ k0 − 1. Using∣∣∣ν(−ν + 1) · · · (−ν + i− 1)

i!

∣∣∣ ≤ 1,
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for i = 1, 2, · · · , k, we have

|x(a+ k0h)| ≤ B

|1− hνc|
[Ra+k0h−h +Ra+k0h−2h + · · ·+Ra] +

hνMra+k0h

|1− hνc|

=
BRa

|1− hνc|
Rk0h − 1

Rh − 1
+
hνMra+k0h

|1− hνc|

≤ BRa+k0h

|1− hνc||Rh − 1|
+
BRa+k0h

2
≤ BRa+k0h,

which completes the induction. In the following, we will show that

La{x}(z) = h

∞∑
k=1

(1− zh)k−1x(a+ kh)

converges for
∣∣1− zh∣∣ < 1

Rh
. To see this, consider

h

∞∑
k=1

∣∣(1− zh)k−1x(a+ kh)
∣∣ = h

∞∑
k=1

∣∣(1− zh)k−1
∣∣∣∣x(a+ kh)

∣∣
≤ h

∞∑
k=1

∣∣(1− zh)k−1
∣∣BRa+kh

= hBRa+h
∞∑
k=1

(∣∣1− zh∣∣Rh)k−1
,

which converges since
∣∣1−zh∣∣Rh < 1. It follows that La{x}(z) converges absolutely

for
∣∣1− zh∣∣ < 1

Rh
.

Theorem 3.1. Assume 0 < ν < 1. Then the unique solution of the fractional
initial value problem

ρ(a)∇νhx(t) = cx(t), t ∈ (hN)a+h, x(a) = A ∈ R (3.3)

satisfies

Lρ(a){x}(z) =
hA(h−ν − c)

zν − c
. (3.4)

Proof. We begin by taking the h-Laplace transform based at a of both sides of
the fractional equation (3.3) to get that

La{ρ(a)∇νhx}(z) = cLa{x}(z).

From Lemma 2.9, and using the initial condition, we have that

zνLa{x}(z) +
h(zν − h−ν)

1− zh
A = cLa{x}(z).

From Lemma 2.6, we get that

(zν − c)
[Lρ(a){x}(z)

1− zh
− hA

1− zh

]
+
h(zν − h−ν)

1− zh
A = 0.

So

Lρ(a){x}(z) =
hA(h−ν − c)

zν − c
.
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Remark 3.1. When we take the h-Laplace transform of both sides of the fractional
initial value problem (3.3), base point must be a, can’t be ρ(a), since the equation

ρ(a)∇νhx(t) = cx(t) is defined on (hN)a+h.

Remark 3.2. For ν = 0.5, in Section 4, we get the inverse h-Laplace transform of
1

z0.5−c , For ν 6= 0.5 and c > 0, it is not easy to get the inverse h-Laplace transform of
1

zν−c . So, in order to obtain behavior of solutions of ν-th (ν 6= 0.5) order Riemann-
Liouville fractional difference equations, a new technique should be developed.

4. Asymptotic Behavior of Half Order Riemann-
Liouville Fractional Difference Equations

For ν = 0.5, we obtain an asymptotic expansion of the solution x(t) of (1.3). This
enables us to obtain various properties of the solution x(t) of (1.3). For example, we

get a monotonicity result and sign condition for x(t) for large t when c ∈ (
√

2
h ,+∞)

and the asymptotic estimate of x(t) when c ∈ (0,
√

1
h ).

Definition 4.1. For |c| < h−ν , 0 < ν < 1, we define the discrete Mittage-Leffler
function by

Ehc,ν,ν−1(t, ρ(a)) =

∞∑
k=0

ckĤνk+ν−1(t, ρ(a)), t ∈ (hN)a.

Remark 4.1. It is easy to see the above series is convergent for |c| < h−ν .

Remark 4.2. Similar to the proof of [19], we get that Ehc,ν,ν−1(t, ρ(a)) is the unique
solution of the IVP

ρ(a)∇νhx(t) = cx(t), t ∈ (hN)a+h,

x(a) =
hν−1

1− chν
.

Consider the half order nabla fractional initial value problem

ρ(a)∇0.5
h x(t) = cx(t), t ∈ (hN)a+h, c 6=

√
1

h
, (4.1)

x(a) = A > 0. (4.2)

Theorem 4.1. Assume 0 ≤ c ≤
√

2
h . Then the unique solution x(t) of the frac-

tional initial value problem (4.1)-(4.2) satisfies

x(a+mh) = A(c− h−0.5)h(hc2 − 1)−1 (−1)mh−0.5

(hc2 − 1)m

[
2h0.5c−Rm[(hc2 − 1)]

]
,

where lim
m→∞

Rm[(hc2 − 1)] = 0.

Proof. Let 1− zh = y, ν = 0.5. Then

1

c− zν
=

1

c−
√
z

=
c+
√
z

c2 − z
=
c+

√
1−y
h

c2 − 1−y
h

(4.3)
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=[c+ h−0.5(1− y)
1
2 ]× h(hc2 − 1)−1

[
1 +

y

hc2 − 1

]−1

=h(hc2 − 1)−1 ×
[
c+ h−0.5

(
1− 0.5y +

0.5(0.5− 1)

2!
y2

+ · · ·+ (−1)m
0.5(0.5− 1) · · · (0.5−m+ 1)

m!
ym + · · ·

)]
×
[
1− y

hc2 − 1
+

y2

(hc2 − 1)2
+ · · ·+ (−1)m

ym

(hc2 − 1)m
+ · · ·

]
=h(hc2 − 1)−1

∞∑
m=0

cmy
m,

where

ai =

{
(−1)i 0.5(0.5−1)···(0.5−i+1)

i! h−0.5, i ≥ 1,

c+ h−0.5, i = 0,

bi =(−1)i
1

(hc2 − 1)i
,

cm =a0bm + a1bm−1 + · · ·+ amb0

=
0.5(0.5− 1) · · · (0.5−m+ 1)(−1)mh−0.5

m!

+
−1

hc2 − 1

0.5(0.5− 1) · · · (0.5−m+ 2)(−1)m−1h−0.5

(m− 1)!

+ · · ·+ (−0.5)
(−1)m−1h−0.5

(hc2 − 1)m−1
+ (c+ h−0.5)

(−1)m

(hc2 − 1)m

=(−1)m
[0.5(0.5−1) · · · (0.5−m+ 1)h−0.5

m!
+

0.5(0.5−1) · · · (0.5−m+ 2)h−0.5

(m−1)!(hc2−1)

+ · · ·+ 0.5h−0.5

(hc2 − 1)m−1
+

(c+ h−0.5)

(hc2 − 1)m

]
=

(−1)mh−0.5

(hc2 − 1)m

[0.5(0.5− 1) · · · (0.5−m+ 1)

m!
(hc2 − 1)m

+
0.5(0.5− 1) · · · (0.5−m+ 2)

(m− 1)!
(hc2 − 1)m−1

+ · · ·+ 0.5(hc2 − 1) + h0.5(c+ h−0.5)
]
.

Note that for |hc2 − 1| ≤ 1, we have

[1 + (hc2 − 1)]0.5 =1 + 0.5(hc2 − 1) +
0.5(0.5− 1)

2!
(hc2 − 1)2 (4.4)

+ · · ·+ 0.5(0.5−1) · · · (0.5−m+1)

m!
(hc2−1)m +Rm[(hc2−1)],

where lim
m→∞

Rm[(hc2 − 1)] = 0. Therefore using (4.4) and c > 0, we get that

cm =
(−1)mh−0.5

(hc2 − 1)m

[
h0.5|c| −Rm[(hc2 − 1)]− 1 + h0.5(c+ h−0.5)

]
(4.5)
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=
(−1)mh−0.5

(hc2 − 1)m

[
2h0.5c−Rm[(hc2 − 1)]

]
.

From (2.1), we get that

Lρ(a){x}(z) = h

∞∑
m=0

(1− zh)mx(a+mh). (4.6)

From (3.4) and (4.3), we get that

Lρ(a){x}(z) = hA(c− h−0.5)h(hc2 − 1)−1
∞∑
m=0

cm(1− zh)m. (4.7)

From (4.6) and (4.7), we get

x(a+mh) = A(c− h−0.5)h(hc2 − 1)−1 (−1)mh−0.5

(hc2 − 1)m

[
2h0.5c−Rm[(hc2 − 1)]

]
. (4.8)

This completes the proof.

Corollary 4.1. Assume
√

1
h < c <

√
2
h . Then the solution x(t) of the fractional

initial value problem (4.1)-(4.2) satisfies

lim sup
m→∞

x(a+mh) = +∞

and
lim inf
m→∞

x(a+mh) = −∞.

Proof. When
√

1
h < c <

√
2
h , we have 0 < hc2 − 1 < 1. From (4.8) we get the

desired results.

Corollary 4.2. Assume
√

1
h < c <

√
2
h . Then every solution x(t) of half order

fractional initial value problem (4.1)-(4.2) is unstable and oscillatory.

Corollary 4.3. Assume 1 < c <
√

2. Then every solution x(t) of half order
fractional initial value problem

ρ(a)∇0.5x(t) = cx(t), t ∈ Na+1, c 6= 1 (4.9)

x(a) = A > 0

is unstable and oscillatory.

From (4.5), we can get an asymptotic estimate of the half order Mitagg-Leffler
function Ehc,0.5,−0.5(t, ρ(a)).

Corollary 4.4. Assume that 0 < c <
√

1
h . Then every solution x(t) of half order

fractional initial value problem (4.1)-(4.2) tends to infinity. Furthermore,

Ehc,0.5,−0.5(a+mh, ρ(a)) =
h−0.5

(1− hc2)m+1

[
2h0.5c−Rm[(hc2 − 1)]

]
,

where lim
m→∞

Rm[(hc2 − 1)] = 0.
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When h = 1, denote

Ehc,µ,µ−1(t, ρ(a)) : = Ec,µ,µ−1(t, ρ(a))

=

∞∑
k=0

ckHµk+µ−1(t, ρ(a)), t ∈ Na,

where Hµk+µ−1(t, ρ(a)) = Γ(t−ρ(a)+µk+µ−1)
Γ(µk+µ)Γ(t−ρ(a)) . (See [16, Definition 3.98]).

Corollary 4.5. Assume that 0 < c < 1. Then every solution x(t) of half order
fractional initial value problem (4.9) tends to infinity. Furthermore,

Ec,0.5,−0.5(a+m, ρ(a)) =
1

(1− c2)m+1

[
2c−Rm[(c2 − 1)]

]
,

where lim
m→∞

Rm[(c2 − 1)] = 0.

Theorem 4.2. Assume c =
√

2
h . Then the unique solution x(t) of the fractional

initial value problem (4.1)-(4.2) satisfies

x(a+mh) = A(
√

2− 1)(−1)m
[
2
√

2−Rm[1]
]
, (4.10)

where lim
m→∞

Rm[1] = 0.

Proof. From (4.8), when c =
√

2
h , we get the desired result.

Corollary 4.6. Assume c =
√

2
h . Then the unique solution x(t) of the fractional

initial value problem (4.1)-(4.2) satisfies

lim sup
t→∞

x(t) = 2
√

2(
√

2− 1)A

and
lim inf
t→∞

x(t) = −2
√

2(
√

2− 1)A.

Proof. From (4.10), we get the desired results.

Remark 4.3. From (4.8) we know that if c = 0, then the solution x(t) of half order
fractional initial value problem (4.1)-(4.2) is asymptotically stable.

So, in this paper, we provide a new approach which is different from the one in
[9] and [19] to prove the asymptotic stability of fractional difference equation (1.1)
when c = 0.

In the following, we prove x(t) tends to zero by use of (4.5) and Stolz-Cesáro
theorem.

Lemma 4.1 (Stolz-Cesáro theorem). Let {An}n≥1 and {Bn}n≥1 be two sequences
of real number. If Bn is positive, strictly increasing and unbounded and the following
limit exists:

lim
n→∞

An+1 −An
Bn+1 −Bn

= l,

then

lim
n→∞

An
Bn

= l.
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Theorem 4.3. Assume c >
√

2
h . Then the solution x(t) of the fractional initial

value problem (4.1)-(4.2) satisfies

lim
t→∞

x(t) = 0.

Furthermore, for large t, x(t) < 0 and x(t) is increasing.

Proof. Let

Am =

m∑
i=1

(
0.5

i

)
(hc2 − 1)i + h0.5(c+ h−0.5),

Bm = (hc2 − 1)m,

then

cm = (−1)mh−0.5Am
Bm

.

For c >
√

2
h , Bm is positive, strictly increasing and unbounded.

lim
m→∞

Am+1 −Am
Bm+1 −Bm

= lim
m→∞

(
0.5

m+ 1

)
(hc2 − 1)m+1

(hc2 − 1)m+1 − (hc2 − 1)m

= lim
m→∞

Γ(1.5)

Γ(m+ 2)Γ(0.5−m)
· hc

2 − 1

hc2 − 2

= lim
m→∞

Γ(1.5)Γ(0.5 +m)

Γ(m+ 2)Γ(0.5−m)Γ(0.5 +m)
· hc

2 − 1

hc2 − 2

= lim
m→∞

Γ(1.5)Γ(0.5 +m)

Γ(m+ 2)
· sin(π(0.5 +m))

π
· hc

2 − 1

hc2 − 2

= lim
m→∞

Γ(0.5 +m)

Γ(m+ 2)(m+ 2)−1.5
· Γ(1.5)

(m+ 2)1.5
· sin(π(0.5 +m))

π
· hc

2 − 1

hc2 − 2

=0,

where we used

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ C (Stirling formula),

∣∣∣∣ sin(π(0.5 +m))

π

∣∣∣∣ ≤ 1

π
,

and

Γ(1− z)Γ(z) =
π

sin(πz)
, z /∈ Z.

By the Stolz-Cesáro Theorem (Lemma 4.1), we know that

lim
m→∞

Am
Bm

= 0.
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So, we have

lim
m→∞

cm = 0. (4.11)

From (4.8), we have

x(a+mh) = A(c− h−0.5)h(hc2 − 1)−1cm. (4.12)

So from (4.11) and (4.12) we have

lim
m→∞

x(a+mh) = 0.

Next we further characterize asymptotic behavior of x(t). Note that

(−1)m
[0.5(0.5− 1) · · · (0.5−m+ 1)

m!
(hc2 − 1)m

+
0.5(0.5− 1) · · · (0.5−m+ 2)

(m− 1)!
(hc2 − 1)m−1

]
=(−1)m

[ (−1)m−10.5(−0.5 + 1) · · · (−0.5 +m− 1)

m!
(hc2 − 1)m

+
(−1)m−20.5(−0.5 + 1) · · · (−0.5 +m− 2)

(m− 1)!
(hc2 − 1)m−1

]
=

0.5(−0.5 + 1) · · · (−0.5 +m− 2)(hc2 − 1)m−1

(m− 1)!

[0.5−m+ 1

m
(hc2 − 1) + 1

]
=

0.5(−0.5 + 1) · · · (−0.5 +m− 2)

(m− 2)!(m− 2)−0.5
· (hc2 − 1)m−1(m− 2)−0.5

m− 1

·
[0.5−m+ 1

m
(hc2 − 1) + 1

]
→−∞,

where we use
0.5(−0.5 + 1) · · · (−0.5 +m− 2)

(m− 2)!(m− 2)−0.5
→ −1

Γ(−0.5)
,

(hc2 − 1)m−1(m− 2)−0.5

m− 1
→ +∞,

0.5−m+ 1

m
(hc2 − 1) + 1→ −hc2 + 2 < 0,

as m→ +∞. Therefore
cm < 0,

for large m. By virtue of (4.12), we know x(t) < 0 for large t.

cm − cm−1 =h−0.5

(
0.5

m

)
(−1)m + h−0.5

(
0.5

m− 1

)
−1

hc2 − 1
(−1)m−1

+ · · ·+ h−0.5

(
0.5

2

)(
−1

hc2 − 1

)m−2

(−1)2

+ h−0.5

(
0.5

1

)(
−1

hc2 − 1

)m−1

(−1)1 + (c+ h−0.5)

(
−1

hc2 − 1

)m
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−
[
h−0.5

(
0.5

m− 1

)
(−1)m−1 + h−0.5

(
0.5

m− 2

)
−1

hc2 − 1
(−1)m−2

+ (c+ h−0.5)

(
−1

hc2 − 1

)m−1]
=h−0.5

(
1.5

m

)
(−1)m + h−0.5

(
1.5

m− 1

)
−1

hc2 − 1
(−1)m−1

+ · · ·+ h−0.5

(
1.5

2

)(
−1

hc2 − 1

)m−2

(−1)2

+ h−0.5

(
0.5

1

)(
−1

hc2 − 1

)m−1

(−1)1+

(
−1

hc2 − 1

)m
hc2(c+ h−0.5)

=h−0.5

(
−1

hc2 − 1

)m[(
1.5

m

)
(hc2 − 1)m +

(
1.5

m− 1

)
(hc2 − 1)m−1

+ · · ·+
(

1.5

2

)
(hc2 − 1)2 + 0.5(hc2 − 1) + (ch0.5 + 1)hc2

]
Because

(−1)m
[(

1.5

m

)
(hc2 − 1)m +

(
1.5

m− 1

)
(hc2 − 1)m−1

]
=(−1)m

(
1.5

m− 1

)
(hc2 − 1)m

[
2.5−m
m

+
1

hc2 − 1

]
=(−1)m−1

(
1.5

m− 1

)
(hc2 − 1)m

[
−2.5 +m

m
− 1

hc2 − 1

]
=

(
m− 3.5

m− 1

)
(hc2 − 1)m

[
−2.5 +m

m
− 1

hc2 − 1

]
=

Γ(m− 2.5)

Γ(m)Γ(−1.5)
(hc2 − 1)m

[
−2.5 +m

m
− 1

hc2 − 1

]
=

Γ(m− 2.5)

Γ(m)m−2.5

(hc2 − 1)m

m2.5Γ(−1.5)

[
−2.5 +m

m
− 1

hc2 − 1

]
→ +∞,

where we use hc2 − 1 > 1,

lim
m→∞

Γ(m− 2.5)

Γ(m)m−2.5
= 1,

lim
m→∞

(hc2 − 1)m

m2.5Γ(−1.5)
= +∞,

and

lim
m→∞

[
−2.5 +m

m
− 1

hc2 − 1

]
= 1− 1

hc2 − 1
> 0.

Similar to the proof cm < 0 for large m, we can get

cm − cm−1 > 0.
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For large m, from (4.12), we know

x(a+mh)− x(a+ (m− 1)h) > 0,

for large m. i.e. x(t) is increasing for large t.
Let t = a + (k − 1)h, k ≥ 2, from Lemma 3.1, it is easy to get the recursion

formula for the equation (4.1)

x(a+ (k − 1)h) =
1

chν − 1

[ k−1∑
i=1

(
k − i− µ− 1

k − i

)
x(a+ (i− 1)h)

]
, k ≥ 2. (4.13)

From formula (4.13), we know x(t) depends on initial value x(a) and is independent
of staring point ρ(a).

As a result, by virtue of [9, 19], Corollary 4.3, Corollary 4.5, Theorem 4.2, and
Theorem 4.3 we can summarize the results as following: A solution x(t) of half
order fractional initial value problem (4.9)

(1) tends to zero if c ≤ 0.
(2) tends to infinity if 0 < c < 1.
(3) is oscillatory unstable if 1 < c <

√
2.

i.e.
lim sup
t→∞

x(t) = +∞

and
lim inf
t→∞

x(t) = −∞.

(4) is oscillatory stable if c =
√

2. i.e.

lim sup
t→∞

x(t) = 2
√

2(
√

2− 1)A

and
lim inf
t→∞

x(t) = −2
√

2(
√

2− 1)A.

(5) tends to zero if c >
√

2.

5. Examples

In this section we give two examples concerning Remark 4.2, Corollary 4.2, Corollary
4.3, and Theorem 4.2. We use the recursion formula (4.13) to enable us to plot the
solutions of the initial value problems in our two examples. Figure 3, Table 1,
Figure 6, and Table 2 are concerned with Theorem 4.3.

Example 5.1. Consider the initial value problem in the form

0∇0.5x(t) = cx(t), t ∈ N2, c 6= 1, (5.1)

x(1) = 1.

We plot the solution x(t) in Figures 1, 2, 3. Note that x(t) of fractional initial
value problem (5.1)

(1) is unstable and oscillatory if c = 1.4.
(2) is oscillatory stable if c =

√
2.

(3) tends to zero if c = 1.5.
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Figure 1. c = 1.4, a = h = 1.
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Figure 2. c =
√

2, a = h = 1.
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Figure 3. c = 1.5, a = h = 1.

Table 1. Table of x(t) for c = 1.5 in Example 5.1.

t x(t) t x(t) t x(t)
70 -0.0001091500 78 -0.0000924634 86 -0.0000797224
71 -0.0001063871 79 -0.0000906218 87 -0.0000783268
72 -0.0001045051 80 -0.0000889699 88 -0.0000769932
73 -0.0001020604 81 -0.0000872639 89 -0.0000756796
74 -0.0001002011 82 -0.0000856946 90 -0.0000744169
75 -0.0000980024 83 -0.0000841054 91 -0.0000731777
76 -0.0000961981 84 -0.0000826179 92 -0.0000719815
77 -0.0000941955 85 -0.0000811311 93 -0.0000708104

Example 5.2. Consider the initial value problem in the form

ρ(0)∇0.5
4 x(t) = cx(t), t ∈ (4N)4, c 6= 1

2
, (5.2)

x(0) = 1.

We plot the solution x(t) in Figures 4, 5, 6. Note that if x(t) is a solution of the
fractional initial value problem (5.2), then x(t)

(1) is oscillatory unstable if c = 0.7.

(2) is oscillatory stable if c =
√

1
2 .

(3) tends to zero if c = 0.8.
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Figure 4. c = 0.7, a = 0, h = 4.
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Figure 5. c =
√

1
2 , a = 0, h = 4.
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Figure 6. c = 0.8, a = 0, h = 4.

Table 2. Table of x(t) for c = 0.8 in Example 5.2.

t x(t) t x(t) t x(t)
120 -0.000397414 152 -0.000280561 184 -0.000210912
124 -0.000381588 156 -0.000269971 188 -0.000204241
128 -0.000361905 160 -0.000259891 192 -0.000197910
132 -0.000346954 164 -0.000250513 196 -0.000191902
136 -0.000330996 168 -0.000241628 200 -0.000186190
140 -0.000317508 172 -0.000233293 204 -0.000180757
144 -0.000304084 176 -0.000225402 208 -0.000175583
148 -0.000292110 180 -0.000217962 212 -0.000170651
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[9] J. Čermák, T. Kisela and L. Nechvátal, Stability and asymptotic properties
of a linear fractional difference equation, Adv. Differ. Equ., 2012.
DOI: org/10.1186/1687-1847-2012-122.
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