For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 2, 2019, Pages 452-474                                                                DOI:10.11948/2156-907X.20170135
Traveling waves of a nonlocal diffusion SIRS epidemic model with a class of nonlinear incidence rates and time delay
Weifang Yan
Keywords:SIRS, traveling waves, nonlocal diffusion, nonlinear incidence rates, upper-lower solutions.
Abstract:
      In this paper, we study the traveling waves of a delayed SIRS epidemic model with nonlocal diffusion and a class of nonlinear incidence rates. When the basic reproduction ratio $\mathscr{R}_0>1$, by using the Schauder's fixed point theorem associated with upper-lower solutions, we reduce the existence of traveling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of traveling wave solutions connecting the disease-free steady state and the endemic steady state. When $\mathscr{R}_0<1$, the nonexistence of traveling waves is obtained by the comparison principle.
PDF      Download reader