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TRAVELING WAVES OF A NONLOCAL
DIFFUSION SIRS EPIDEMIC MODEL WITH A
CLASS OF NONLINEAR INCIDENCE RATES
AND TIME DELAY™

Weifang Yan

Abstract In this paper, we study the traveling waves of a delayed SIRS epi-
demic model with nonlocal diffusion and a class of nonlinear incidence rates.
When the basic reproduction ratio %y > 1, by using the Schauder’s fixed
point theorem associated with upper-lower solutions, we reduce the existence
of traveling waves to the existence of a pair of upper-lower solutions. By con-
structing a pair of upper-lower solutions, we derive the existence of traveling
wave solutions connecting the disease-free steady state and the endemic steady
state. When %, < 1, the nonexistence of traveling waves is obtained by the
comparison principle.

Keywords SIRS, traveling waves, nonlocal diffusion, nonlinear incidence
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1. Introduction

Since Kermack and Mckendrick [6] constructed a mathematical model of an ODE to
study epidemiology in 1927, various models have been used to describe various kinds
of epidemics, and the dynamics of these systems have been investigated. However,
on the one kind, in disease progression, the spatial content of the environment plays
a crucial role; the spread of germs, bacteria, and pathogen in the area is the main
reason which leads to the spread of infectious disease. On the other kind, due to
the diseases latency or immunity, the presence of time delays in such models makes
them more realistic. In recent years, the dynamics of delayed diffusion epidemic
models have been widely studied by researchers [1, 3, 7, 12-14, 20]. For example,
considering the spatial effects and time delay, Gan etc [5] concerned the following
delayed SIRS epidemic model with spatial diffusion

98 = Dg2°S 4 A —dS(x,t) — BS(z, t)I(z,t — 7) + OR(, 1),
9 — DL 4 BS(w, ) (2t —7) — (7 +  + d)I (x, t), (1.1)
O — DRGE +yI(x,t) — (5 + d)R(x, 1),
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where S(z,t), I(x,t) and R(z,t) represent the sizes of the susceptible, infective and
recovered individuals at location € R and time ¢t > 0, respectively. Dg, D; and
Dpg denote the corresponding diffusion rates. The parameters A,d, 5,9,~, a, T are
positive constants in which A is the recruitment rate of the population, d is the
natural death rate of the population, S is the transmission coefficient, d is the rate
at which recovered individuals lose immunity and return to the susceptible class,
is the recovery rate of the infective individuals, « is the death rate due to disease,
and 7 is a fixed time during which the infectious agents develop in the vector and it
is only after that time that the infected vector can infect a susceptible individual. In
[5], by constructing a pair of upper-lower solutions, the existence of traveling wave
solutions connecting the disease-free steady state and the endemic steady state was
given.

Note that in system (1.1), Gan etc used the bilinear incidence rate 351 based on
the law of mass action. However, as the number of susceptible individuals is large,
it is reasonable to consider the saturation incidence rate instead of the bilinear
incidence rate [4, 16]. Recently, Yang etc [17] considered the following delayed SIR
epidemic model with saturation incidence rate and spatial diffusion

9 = DsZ5 + A—dS(x,t) - Bledleizn)

2 S(z,t)I(z,t—T
9 = D;gd + BT (4 ) I, 1), (1.2)

98 — DRPR 4 yI(z,t) — p1 R(x, t).

By using the cross iteration method and the Schauder’s fixed point theorem, they
investigated the existence of traveling waves of system (1.2). Li etc [8] further
considered the minimal wave speed by presenting the existence and nonexistence
of traveling wave solutions of system (1.2). Zhou and Wang [21] concerned the
following delayed SIRS epidemic model with saturation incidence rate and spatial
diffusion

95 = DgZ5 + A—dS(x,t) - BEEDILID 4 5R(a 1),

2 x, T, t—T
Ol = Dy 2ok + BSeDICln) (o 4yt d) (2, 1), (1.3)

O = DRGE +1(2,t) - (5 + d)R(x,1),

and obtained the existence of traveling wave solutions.

Although the Laplacian operator A := 8%22 can be used to model the diffusion of
the species, it is a local operator which suggests that the population at the location
x can only be influenced by the variation of the population near the location z.
However, in dynamics of infectious diseases, dispersal is better described as a long
range process rather that as a local one. Since the long range effect is taken into
account, nonlocal diffusion equations have received great interest [9, 10, 15, 18]. Yu
etc [19] considered the following delayed SIRS epidemic model with nonlocal spatial
diffusion

%ff =[(J*S)(x,t) — S(x,t)] + A —dS(z,t) — BS(z,t)[(x,t — T)
+oR(z,t),

G = (T D)(a,t) = I(z,t)] + BS(x, ) (w,t — 7) — (v + a + d)I (2, 1),

98 — [(J * R)(x,t) — R(z,t)] + vI(2,t) — (6 + d)R(, t),

(1.4)

and obtained the existence of traveling wave solutions, where J .S, J* [ and J % R
are the standard convolutions with the space invariable x. J*S — S, Jx I — I and
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J * R — R indicate that the diffusion of all the susceptible, infective and recovered
individuals is free and long range. Tian and Xu [11] investigated the following
delayed SIRS epidemic model with saturation incidence rate and nonlocal spatial
diffusion

95 = D[(J * S)(a.t) — S(x,1)] + A — dS(a,1) — ESeDlrtn)
+iR(z,t),

1.5
9L — D[(J * I)(w,t) — I(z,1)] + B3@DIEIZD) oy 1 d) (), 9
t

ot ( 14+al(z,t—T)
98 _ D[(J % R)(z,t) — R(z, )] +11(x.) — (6 + )Rz, 0)

and obtained the existence of traveling wave solutions.

Motivated by the work of [11, 19], in this paper, we study the following delayed
SIRS epidemic model with a class of nonlinear incidence rates and nonlocal spatial
diffusion

% = DI(J * 9)(z, ) ( t)] + A —dS(z,t)
—BS(x,t) fo I(z,t — 7))dT + 0R(z,1),

5t = DI(J *I)(x, ) I(z,t)] +BS(2,t) [y F(r)g(I(x,t = ))dr (1.6)
(v +a+d)(z,t),

G¢ = D[(J * R)(w,t) — R(z,t)] +vI(x,t) = (§ + d)R(x,1),

where h is a maximum time taken to become infectious and f(7) denotes the fraction
of vector population in which the time taken to become infectious is 7 [2].

Meanwhile, throughout thls paper we give the following assumptions:
(Al)J(y)zJ( ) >0, f y)dy = 1. For any fixed u > 0,

+oo
Jy = / J(y)et¥dy < .

(A2) f(r) is nonnegative and continuous on [0, k], f(0) = 0. Moreover,

/Oh f(r)dr =

(A3) g(I) is continuous differentiable, monotone increasing on [0, +00) with

9(0) =0.
(A4) I/g(I) is monotone increasing on (0, +00) with

li ! 1
5ot g(I)
Tt is easy to see that g(I) is Lipschitz continuous on [0, +00) and 0 < g(I) < I holds
for I > 0.

The rest of this paper is organized as follows. In Section 2, by constructing
a pair of upper-lower solutions and using the Schauder’s fixed point theorem, the
existence of traveling wave solutions connecting the disease-free steady state and the
endemic steady state of system (1.6) is established. In Section 3, the nonexistence
of traveling waves is considered.
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2. Existence of traveling waves for %, > 1

In this section, we apply the Schauder’s fixed point theorem associated with upper-
lower solutions to study the existence of traveling wave solutions of system (1.6)
connecting the disease-free steady state and the endemic steady state. Denote

Ap

Ty = —
T d(v+a+d)

(2.1)

Ry is called the basic reproduction ratio of system (1.6), which describes the aver-
age number of newly infected cells generated from one infected cell at the beginning
of the infectious process. This quantity determines the thresholds for disease trans-
missions. It is easy to show that system (1.6) always has a disease-free steady state
(A/d,0,0). From

A—dS—pSg(I)+dR=0,

BSg(I)— (v +a+d)I=0, (2.2)

—(0+d)R=0,

we obtain

0+d

Note that g(I) satisfies (A4). If %y > 1, then (2.2) has a unique positive solution
(S*,I*, R*), where

Aﬂzd(7+a+d)g( )+ﬂ<d+a+d>

A =d(y+a+d) (I*)+ﬁ<§+d+a+d>
(0 +d)(d+ Bg(I*))’ S +d

That is, system (1.6) has a unique endemic steady state (S*,I*, R*). Denoting
N = S+ 1+ R, then system (1.6) is equivalent to the following system

S* =

9N — D[(J * N)(z,t) — N(z,t)] + A — dN(z,t) — ol (z,1),
o= DI ) 10011 s D10 0
+B[N(x,t) — I(x, R(z,1)] fo (M)g(I(x,t —7))dr,

9% — D[(J * R)(x,t) — M,H+ﬂ@ﬁ (6 + d)R(x, t).

By making a change of variables N = A/d — N, I = I,R = R and dropping the
tildes, system (2.3) becomes

9% = D[(J = N)(z,t) — N(z,t)] — dN(z,t) + ol (z,t),
9 = DT« I)(w,t) — I(2,t)] = (v + o+ d) [ (1)

+B[4 = N(x,t) — I(x,t) — R(z,8)] fo f(r)g(I(z,t - 7))dr,
9% — D[(J * R)(z,t) — R(z,t)] + vI(z,t) — (§ + d)R(, t).

(2.4)

It is easy to show that if %y > 1, then system (2.4) has two steady states (0,0, 0)
and (kq, ko, k3), where

ki=AJd— S —T* —R*, ky=1T", ks=R"
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Obviously,

A A
ko, ki+kot+ks=——-85"<—.

«
ki = Ekz > 0, /{ig d d

-0
I

A traveling wave solution of (2.4) is a special translation invariant solution of the
form (N (z,t),I(x,t), R(z,t)) = (¢(x + ct), p(x + ct),¥(x + ct)), where (¢, p, ) €
C(R,R?) is the profile of the wave that propagates through one-dimensional spatial
domain at a constant speed ¢ > 0. On substituting (N(x,t),I(x,t), R(z,t)) =
(p(x+ct), p(x+ct), P(x—+ct)) into (2.4) and denoting the traveling wave coordinate
x + ct by &, we derive that

/(&) = D [T (€ — oy) — ¢(E)ldy + f1(o,0,9)(E),
o' (€) =D [T (€ — y)lp(y) — (©))dy + f2(e, 0,9)(£), (2.5)
! (€) = D [T J(€ — y)Wy) — »(E)]dy + f3(¢,0,9)(€),

where

F1(6,0,9)(€) = —do(€) + ap(©),

F2(6.0,0)(€) = B2 — 6(€) — (&) — w(©)] [ F(T)g(p(€ — cr))dr
—(v+a+d)p(§),

(6,0, 9)(€) = () — (8 + d)p(€).

System (2.5) will be solved subject to the following asymptotic boundary conditions

lim (¢(£),¢(£),%(€)) = (0,0,0),  1im (¢(£),¢(£),¥(€)) = (b1, k2, k). (2.7)

{——o0 £—+o0

(2.6)

Note that %Zy > 1 can be rewritten in the form % — (y+a) > d. On the other
hand, we have

a— =d, 'yk—3—(5:d.

We can select suitable values of My, My, M3 such that My > ki, My > ko, M3 > ks
and satisfying

%—(’y+a)>a% > d,
AB My 5 g (2.8)
Furthermore, because of % > kq + ko + k3, we can also let
A
E>M1+M2+M3 and ki + ko + k3 > M7 + Ms. (29)

In fact, let

M, = (H%)kl, Mo = (14 €)ka, My = (1+§) .

By choosing € > 0, we can obtain (2.8) and (2.9).
Let

CV[O,M] (]Ra RS) = {(¢a %1/)) € C(Rng) :
(0,0,0) < (¢(£), 0(£),%(€)) < (My, Ma, M3) for { € R}.
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For ¢ = ((blv Wlﬂ/)l)a U= (¢27 90237/}2) € C[O,]\/l] (Rv R?))a we can eaSﬂy get that
|f1(P1,01,91)(§) — f1(P2, p2,12)(§)] < (@ + d)|® — Vgs,

| f2(P1,01,01) (&) — fa(d2, 02, 12)(E)] < L|® — Ugs,

|f3(@1, 01, ¥1) (&) — f3(d2, 2, ¥2)(E)] < (v + 0 + d)|P — Vlgs,

where L = 42 + B[(M; + My + M3) Ly + 3g(Ms)] + (v + a +d), Ly is the Lipschitz
constant of g and | - |gs is the Euclidean norm in R3.
Define H = (Hy, Ha, H3) : Co, u (R,R?) — C(R,R3) by

—+oo
Hy(6,0.0)(€) = D / J(€ — )o(y)dy + ap(),

+oo
Hy(6, 0,0)(€) =D / J(€ — y)o(y)dy + BMap(€)

G ]/f £ er)

+oo
H3(o,0,79)(& D/ J(& = y)Y(y)dy + ve(§).

The operators Hy, Hy and H3 admit the following properties.
Lemma 2.1. We have

)

v Hi(¢,0,9)(€) >0,  Hs(g,0,0)(€) >

J;QS any (¢,¢,%) € Cio,m) (R, R?);
Hi (2, p2,92)(§) < Hi(d1,01,91)(E),
Hj(2, p2,102)(§) < Hi(d1,1,91)(&);
Ha (1, 01,91)(§) < Ha(dbz2,01,91)(E),
Hs(o1,p2,11)(§) < Ha(d1,1,%1)(8),

Ho(¢1,01,91)(§) < Ha(¢1,01,92)(§) for§ €R - with

(0,0,0) < (¢2(£),02(£), ¥2(8)) < (#1(8), 1(8), ¥1(8)) < (My, My, Ms).
Proof. Assertion (i) can be easily get from (A1). For (ii), we have

Hi(¢2,02,12)(&) — Hi(¢1,01,¢1)(§)
“+oo
=D / J(€ — ) [d2(y) — b1y + aloa(€) — 01(6)] < 0,

H; (¢, p2,12)(&) — Hs (1, 1,%1)(€)
+oo
-D / J(E — 9)ln(y) — 1)y +lp2(€) — 02(6)] < 0.
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For (iii), we have

Ha(é1,01,%1) (&) — Ha(o2, 1, 91)(§)
—¢1(§ / f(r —ec7))dT <0,

H (1, 01,91)(&) — Ha(d1, p1,12)()
NG / F(F)glpr(€ — er))dr <0,

Ha (o1, p2,91)(§) — Ha(d1, 01,91)(E)
+o0 A
- / &= Dleat) — o1y + 8 |5~ 61(6) ~ e2(6) — a (6]

/ fr — ) — gl (€ — er))dr

+ Blp2(8) lMQ/ f(r (€ —cT)) T] <0.

Here we used the face % > My + My + M3 and My — g(Ms) > 0. The proof is

complete. O
In terms of Hy, Hy and Hs, system (2.5) can be rewritten as

c¢'(§) = —b19(§) + Hi (o, ¢, 9)(§),
Csﬁl(f) = 7b250( ) + H2(¢3907 )( )a (2'10)
c'(€) = —b3(§) + Hz(9, ¢, ¥)(§),

where by = D+ d,bo =D+ My +~v+a+d, b3 =D+ 0 +d.
We define an operator Q = (Q1,Q2,Q3) : Cjoa(R,R?) — C(R,R?) by

b, £
QB = Q0.0 0)(©) = e ¥ [ BB, (211)

where ® = (¢, p,1)). Tt is easy to see that Q1(¢, p,¥), Q2(¢, v,v) and Q3(d, v, )
satisfy
c@(d, 0, 9)(§) = —01Q1(9, 0, ¥)(§) + H1(, 0, 9)(8),
V(€

CQ/S (¢5 ®, 1/))(5) = 763@3((257 ©, ( ) + H3(¢7 ©, 1]/}) (6)
With the properties of H;, we have the following result for Q.

Lemma 2.2. For any (0,0,0) < (¢2(£), 2(£),¥2(£)) < (91(8), p1(§),¥1(§)) <
(My, Ms, M3), we have

Q1(d2, p2,12)(§) < Q1(91, 91, ¥1)(€),
Q3(d2, p2,12)(§) < Q3(91, 91, ¥1)(€),
Q2(d1, 01,91)(§) < Q2(92, 1, ¥1)(8),
Q2(91, 2, ¥1)(§) < Q2(1, 01,¥1)(§),

Q2(¢1a¢15¢1)(§) §Q2(¢139017w2)(§) fOT’gG]R.
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We next verify the continuity of Q. For € (O,min{%, %2, %3}), define B, (R, R3)=
{® € C(R,R?) : |®[, < oo}, where |®], = sup,cp |P(£)[e™ €|, Then it is easy to
check that (B,(R,R?),|-|,) is a Banach space.
Lemma 2.3. Q = (Q1,Q2,Q3) is continuous with respect to the norm |- |, in
B.(R,R%).

Proof. Let ® = (¢1,01,¢1), ¥ = (d2, ¢2,12). Then we have

|Q1[®](&) — Qu[W](&)]e ¢!
el e,
< / e‘?(f—s)|H1(¢1a<P1,’l/J1)(s)—H1(¢2,¢27¢2)(s)|d8

c —o0

—ulgl € by +oo
et / De-2(6-9) / T(s —y)|é1(y) — éa(y)|dyds

c —o00 —o0

—nl€] € b
+ & / ae=HE 1 (5) — oo (s)|ds

c —00

—plgl g L +oo
_ De / e~ =) / J(s — 9)|b1(y) — baly)le "V ek¥ dyds

c oo —o00
—ulél € L
+ 2 [ eI (o) =l e
& — 00
€ g—nlélg—"2(E—9)
< D(]“|c1)7\11|#/ — eMblgs
oo ¢
€ ommlElg— " (e—s)
+oz|<I)f\I'|“/ 66—e"ls‘ds.
oo ¢
For ¢ > 0, we have
£ omnlélp—2(e—s
/ e Melem 6 g,
oo ¢
[ 0 13
:1 / e—ufe—%(f—s)e—usds_’_/ e—Mfe_bT,l(ﬁ_s)eusds
c |/ s 0

0 3
1 _bifen bi—cp _bifen bitep
==—le < ¢ e e ®ds4e e e” < °ds
c —o0 0

L e e (1_6—%”“5)]
c by —cu b1+ cu

< 1 n 1

T by—cp bytcu’

For ¢ < 0, we have

& —plé],— 2 (E—s)
/ el T g

— oo Cc

3
- 1/ euﬁe*b%(G*S)e*usds
c —0o0
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zleblcc“ﬁ/g oS g

C —00

1
by —cu’

Thus, we obtain

QuBI(E) — Qi[B](©)e el < (bl . i/) (DJ, + a)|® — 0,

Define

1 1
Fy = D .
1 (51—Cu+b1+c,u)( Jy +a)

By the same argument, we can define F5 as

1 1
Es = DJ .
s <b36u+bg+cp>( ht)

Note that
+oo
Hal6,0.1)(€) =D /_ (€ = g)ely)dy + (BMs + v + a + d)p(€)

Therefore, we have
|Q2[®](€) — Q2] (&)]e !
—ulgl € by
< ek / E*T(E*s)|H2(¢1790171/)1)(5) — H2(¢23$0271/12)(S)|d5

c —o0

e_lL|£| 3 —bl(f—s) Foo
/ De-4 / J(s = )le1(y) — p2(y)|dyds

c —00 —0o0

e_ulf‘ 5 by §
T / (BMz + 7+ a+d)e = E 9 |pi(s) — pa(s)|ds

—00

—plgl € bo
4+ & : / e™ e | folbr, 01,101)(5) — fald2, 92,42)(s)|ds

c —00

e*#|§| g 72(575) +oo
- / De " / J(s — )1 (y) — pa(y)|dyds

c —o0 —o0

e_ﬂlf‘ € bo
+ T (00 44 ke B (5) — o)l

—00

- 3
+e M|§/ e*b%(ffs)[,M)—\I/‘eiﬂ‘sleu‘slds

c —00

1 1
< D M. d+L)|® —T|,.
_<b2_cu+b2+cu>( Ju+BMy+y+a+d+ L) |

Then we have |Q[®] — Q[¥]|, < E|® — ¥|,. This completes the proof. O
Now, we give the definition of upper and lower solutions of system (2.5) as

follows.
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Definition 2.1. A pair of continuous functions ®(&) = (¢(£),2(€),¥(€)) and ®(¢) =
(9(&), 9(£),¥(§)) are called a pair of upper-lower solutions of system (2.5), respec-
tively, if there exists a set S = {¢; € R, =1,2,...,m} with finite points such that

/

® (&) and @' (€) exist and are bounded for £ € R\S, and ®(&), ®(€) satisfy

D [T I~ y)[bly) — 6(O)ldy — ¢d'(€) + f1(5,5,8)(€) <0
D [T (& - Bly) — B(E)ldy — B () + f2(0,5,9)(€) <0,
D [T U~ 9 [y) — P(©)dy — () + f3(6,5,0)(€) <0
D [T 0(e —y)[oy) — ¢(O)]dy — g’ (€) + f1(d,0,4)(€) > 0
D [T 5 Ye(y) — (©))dy — e’ (€) + f2(h, 0, ¥)(€) > 0,
D [T (€ - ly) — v()]dy — et (€) + f3(¢, 0,1)(€) > 0

for £ € R\S, respectively.

We assume that a pair of upper-lower solutions ®(¢) = (4(£), (), (€)) and
2(§) = (¢(£), (), ¥(€)) are given such that
(P1) (0,0,0) < (6(£), (£), ¥(£)) < (0(£),%(£), ¥ (€)) < (My, My, Ms) for § € R;
(P2) e, (0(6), 7€), D(E) = (0,0,0), B

limfaJrOO(?(f) ) Q(f ) 11m§*>+oo(¢(£)’¢(£)’ ¢(§)) = (klv k27 kS);
(P3) ®(+) < @'(6-), 2/(6+) > ¥/ (6-) for { € R.

Define a profile set

=T ((¢.0,%), (6,7.0))
= {((€), 0(€),¥(€)) < (6(),9(£),1(€)) < (3(€),B(€), ¥(€)) } -

Obviously, I is nonempty, convex, closed and bounded. We have the following two
lemmas.

Lemma 2.4. Q') CT.

,9(€
(€

Proof. From Lemma 2.2, for any (¢, ¢, 1) satisfying

(6(€), 9(€),%(€)) < (6(£), (&), ¥(€)) < (9(£),B(€),¥(€)) for € € R,
we have
Q1(d,9,9)(€) < Qu1(g, 0, ¥)(€) < Q1(¢, B, 9)(8),
Q2(0,9,9)(€) < Qa(g, 0, ¥)(€) < Qa2(¢, 5, )(8),
Q3(, 0, ) (€) < Qs(9, ,9)(€) < Q3(6,,9)(§) for € eR.

By the definition of upper-lower solutions, we have

Hy(6,5,9)(€) < ¢ (€) +bid(€) for € €R\S.

Let &g = —oo and &,,,+1 = +00. Then, for §;_1 < £ < & withi=1,2,...,m+1,
we have
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el (S0 [ ) aon]

=¢(&) for £ €R\S.
By the continuity of Q1(¢,?,%)(£) and ¢(€), we get that Q1(¢, B, ) (&) < #(€) for

£cR.
By a similar argument, we can get

Q1(0, 9, ¥)(€) = ¢(6),

Q2(8,0,0)(€) > (&), Q24,5 ¥)(&) < B(&),
Qs(e, 0, ¥)(€) > ®

(&), Q3(0,7.9)(E) <¥(§) for LR
Then Q(I") C T'. The proof is complete. O
Lemma 2.5. Q: ' = T' is compact with respect to the decay norm |- |,.

Proof. Noting that

/ ]- bl _ 1 ¢ b—ls
Ql(‘?a%ﬁ’)(f) = EHl(QSa(p,w)(g) 62 5[ €c Hl(éf’,%i/))(s)dsv

it follows from Lemma 2.2 that Q] (¢, p,¢)(§) > 0. By (ii) in Lemma 2.1, we have

02 QU6 0)(©O) < Hi(6,0,0)(O) < TG F D)) Tore e R

Hence, (P1) implies that there exists a positive constant Ny such that |Q] (¢, ¢, ¢)|, <
Ny

By a same argument to Qs(¢, ¢, 1)(£), we obtain that there exists a positive
constant N3 such that |Q5(¢, v, )|, < Ns.

For )5, we have

/ 1 bo ——25 ¢ b2 g
Qh(6,0.)(6) = ;Ha(6,00)(6) — e ¢ [ oo, 0)(5)ds

Thus, we obtain

|Q/2(¢,807¢)|u
1 b by 3 by
:geg EH2(¢790a¢)(€) - 6%6775 [m eTSHQ(QbaQDaw)(S)dS e*p«\f\

< Lsup Ha(6, 0, 0) (€)1l
C ¢eR

b £
+ —3 supe” 5_“m/ e e sellsle= s Hy (¢, 0,4 (s)ds
C” ¢eR —00

ba treopel [C e pulsl
< E|H2(¢a§071/}>|u + gl%(%%iﬂ)\usnp e ¢ e~ el®lds 5.
£€ER —0o0



Traveling waves of a SIRS epidemic model 463

If € > 0, we get

3
e*b%ﬁfulﬁl/ o 25 pulsl g

—0o0

0 3
__botcp bo—cu botep
=e Cg/ ecsds—i—/ecsds
—o0 0

¢ L _c
Thy—cp bytep

If £ < 0, we have

3
b2 > by
e~ o¢ H\&\/ e a5l dg
— 00

3
_bo—cp by —cp
=e ¢ £/ e < °ds
— 00

C
<

T by —cu

Therefore, we obtain

, 1 b/ 1 1
@l < |2+ 2 (ot )| (6l

Noting that (0,0,0) < (¢(£),©(£),¥(§)) < (M, M, Ms), it follows from Lemma
2.1 that

HQ(M1707M3) S H2(¢,S03’l/))(£) S H2(07M250) for 5 eR.

Hence, there exists a positive constant Ny such that |Q5(¢, p,¥)|, < Na.

The above estimates for Q' (¢, ¢, 1) shows that Q(T') is equicontinuous. It follows
from the proof of Lemma 2.4 that Q(I") is uniform bounded.

Next, we define

Q(Q%ﬂ’)(*”), 5 € (7007*77')7
Qn(d),(p,d))(f) = Q(QS,SDﬂb)(g), §€ [_n’n]v
Q(o, ¢, ¥)(n), £ € (n,+00).
Then, for each n > 1, Q™(T") is also equicontinuous and uniform bounded. Now, in

the interval [—n, n], it follows from the Arzela-Ascoli Theorem that Q™ is compact.
On the other hand, Q" — @ in B,(R,R?) as n — oo, since

sup Q™ (0, 0, %) (€) — Q(&, 0, ) (€)[e !
§2(M1+M2+Mg)€_un—)0, n — .

By Proposition 2.12 in [22], we obtain that @ is compact on I'. The proof is
complete. 0O

Theorem 2.1. Assume that (A1)-(A4) hold. Suppose that there exists a pair of

upper-lower solutions ®(§) = (4(£),(€),¥(€)) and 2(§) = ($(€), £(€), ¥(€)) of
system (2.5) satisfying (P1), (P2) and (P3), then system (2.4) has a traveling wave
solution satisfying the asymptotic boundary conditions (2.7).
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Proof. Combining Lemmas 2.1-2.5 with the Schauder’s fixed point theorem, we
know that there exist a fixed point ®* = (¢*,¢*,¢¥*) € T' of @, which gives a
traveling wave solution to system (2.4).

By (P2) and the fact that

(6(£), (), %(&)) < (67(£), ™ (£), " (€)) < (8(€), B(£), ¥ (€)),

we get that
lim (¢%(€), ¢*(€),¥"(€)) = (0,0,0),

lim (6°(€), " (€), " (€)) = (k. K, ).

Therefore, the fixed point (¢*, ¢*,1*) satisfies the asymptotic boundary conditions
(2.7). The proof is complete. O

In order to construct appropriate upper-lower solutions for (2.5), we consider
the following functions

Ai(\e)=D fj;j J(y)e ™Mdy — D —ch—d+ a%
As(A\,¢) =D [17 J(y)e Mdy — D — A+ 4 — (y+ a +d),
As(Ae) = D [T J(y)edy — D — X — (8 +d) + 72

From the selection of M7 and Ms, we can obtain that a% —d > 0. Furthermore,
by a direct calculation, we have

M
A1(0,¢) :aﬁf —d >0

A1(X,00) = —o0 for any given A > 0;

C
PA1(), c) +ee A
D —AY
8>\2 / =0

Thus, we conclude that there is a ¢§ > 0 such that Aj(\,¢) = 0 has two zeros
0 < A1 < Ag for ¢ > cf.
By the same arguments, noting the selection of Ms and M3, we can also have

Ag(A,¢) =0 has two zeros 0 < Ag < A4 for ¢ > 3,

As(A,¢) =0 has two zeros 0 < A5 < Ag for ¢ > ci.
Let ¢* = max{c], ¢}, c5}. We obtain a lemma as follows.

Lemma 2.6. Assume that %o > 1, then we have \1 < A3 and A5 < A3.

Proof. Define
+o0o
V=D [ ey

M.
gl()\):c)\—&—D—Fd—ozﬁi,
A
gg()\):c)\+D—£+(’y+a+d),

d
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M,

gg()\):cA+D+(5+d)—7ﬁ3.

Then we have
h(A1) = g1(A\1),  h(A3) = g2(A3),  h(XAs) = g3(As).

From %y > 1 and (2.8), we can get

92(0) < g1(0), g2(0) < g3(0).

Note that h”(\) > 0 for all A; hence, we have A\; < A3 and A5 < A3. O
Assuming that %, > 1, we say that there exist ¢; > 0(i = 1,2,...,6), e2 €
(0,k1), €4 € (0,k2), €6 € (0, k3) satisfying the system of inequalities

—d(ky + 1) + aMy < 0,
5(%—k1+€2—k2—53—k3+56)9(/€2+53)
< (v+a+d)(ks+es3),

My — (§ + d) (k3 + €5) < 0,

—d(ky —e2) + alks —e4) >0,

B (4 — My —ko+eq— M) g(ks — 1)

> (v +a+d) (ks — e4),

v(ke —e4) — (6 + d) (k3 — e6) > 0.

(2.13)

Noting that k1 = §ko and k3 = Hidkg, we can find €; > 0,e5 > 0 such that
g1 > %(Mg — kg) = %Mg — k1 >0,

= —d(k1 +¢€1) +aM, <0,

Y v
0 ey Y oA
& > 5 d(Mz kz) 5 dM2 k3 >0,

= yMsy — ((54— d)(kg +€5) < 0.

By the second equation of system (2.5), we have

p (3 — k1 — ko —ks) g(k2) = (v + a + d)k,.

Let e4 > (M — k1) + (M3 — k3). It then follows from (A4) that
A
p <d — My — ko +e4 —M3> g(ka —€4)
> (v +a+d) (ke —eq).

Noting (29), for g4 € ((M1 — k‘1) + (Mg — kg),k’g), we can find g9 € (O,kl), g6 €
(0, k3) such that

« «
k1>82>584:k1—5(/€2—€4)>07

= —d(/ﬂl — 52) + Oz(k‘g — 64) > 0,
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v i
k ey L
AR PP R
= (k2 — €4) — (6 + d) (k3 —€6) > 0.
Let €3 > €2 + 6. It then follows from (A4) that

(kQ — 84) > O,

A
B(d—k1+€2—k2—53—k3+€6)g(k2+53)

<(v+a+ d)(kz +e3).

Therefore, we claim that such a group of €;(i = 1,2, ...,6) could be found.
Let 51(2 =1,2,...,6) be defined as in (2.13). We define two continuous functions
B(E) = (6(), 7(). $(€)) and B(€) = (0(8), (&), ¥(€)) as follows
— . kleklf, f < 61, o 0, 5 < 527
¢($) B {kl + 516_>\€7 5 > 617 é(g) B {kl - 526_A57 5 > 527
_ ke, § <&, 0, § < &,
90(5) {k2 + 5‘36_)\5, 5 > 637 g(g) {kQ - 646_)\§a g > 54)
- ksest, & <&, )0, § < &
12[)(5) B {k?) + 5‘56_)\5, 5 > 657 %(g) B {k?) - 566_>\£7 5 > 567

where £1,&3,&5 > 0, £2,84,&6 < 0 and A > 0 is a small enough constant to be chosen
later. Let M;, M2, M3 be chosen such that (2.8) and (2.9) hold. Then we first
choose A > 0 to be sufficiently small such that & > 0,&3 > 0,&5 > 0 satisfying

ki+er > My =supd(é) = kieM® > ky,
£€R

ko +e3 > My = sup@(f) = 77]62(5)\353 > ko,
§ER

ks 4 e5 > Mz = sup ¢(€) = k3e™® > k.
£eR

Furthermore, we can choose n € (0, 1) such that {3 > max{&;,&}. On the other
hand, noting that

1 €9 €4 1 €6
5 71 —=<In o) 54:*11’177 56 71 7 71117,
A= aky S * 3 s

we have from g2 > 9e4 and g6 > 5+da4 that &4 < min {&2,&s}. It is obvious that
®(¢) and ®(¢) satlsfy (P1),(P2) and (P3).

Lemma 2.7. Let %y > 1. Assume that (A1)-(A4) hold, then ®(&) = (¢(€),P(€),1(€))

is an upper solution and (&) = (4(£), (&), ¥ (§)) is a lower solution of system (2.5),
respectively.

Proof. Firstly, we have the following facts
G(&) < k1eMs, G(€) <ky+ere* for £ER,
B(E) < mkae™®, B(E) <ha+eze ™ for LER, (2.14)
P(E) < k3e™C, P(€) < ks +ese ™ for EER,
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and
B(6) >0, B(&) >k —eae ™ for EER,
0(€) 20, (&) 2 ky—eqe ™ for {ER, (2.15)
P(€) >0, P(§) > ks — gge ¢ for £ eR.

If £ < &, then ¢(€) = k1eM&, B(€) = nkaest, it follows from (2.14) that

+ o0
D / J(E— 9)[B(y) — BOdy — B () — dg(€) + ap(€)
.

< Dk / J(€—y) (MY —eME) dy — ehiket*

oo

— dk1eM¢ + ankye?s*

_ Yoo i
< D/ J(y)e*/\lydy —D—c\ —d+ an;e()\sh)él] klex\15
o 1
r too koe?sé1
— MYy D — e\ — 2€ Mg
= D/ﬁOo J(y)e ¥dy — D —chy —d + ka‘leklﬁl} ke
[ too koe?sé1
= D/ J(y)e MYdy — D — ey —d + an 2¢ } ket

_ too M, R

< D/ J(y)ef)‘lydy —D—c\—d+ on} ket
L —00 1

= Al()\l,c)]ﬂ‘l@)\lE =0.

If € > &, then ¢(€) = k1 +e1e7 ¢, B(€) < My, we have from (2.14) that

+oo , o
D [ e~ 0)(6) - HOMy - 5(€) ~ dble) + ap(€)
+oo
< Degy / J(& —v) (e_Ay — e_Ag) dy 4 chere ¢
—d (k1 +e1e7 ) + aly
+oo
< [Dal/ J(y)eMdy — Dey + chey | e

—d (k1 +e1e7 ) + aMy
= Pl()\)

From (2.13), we have that P;(0) = —d(ki+¢1)+aM; < 0. Thus there exists A} > 0
such that

+oo
D / J(E — ) B(y) — BEy — B (€) — dBE) + aB(E) < Pi(N) < 0

for A € (0, A\}).
If € < &3, then B(€) = nkoeE, B(€ — 1) < nkoe €T we derive from (2.14)
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that
D/+°°J (€~ DIey) ~ PNy () + 5 | - 66) - 7(E) - v16)
/ F(T)g(@(E& —er))dr — (v + a+ d)p(¢)
< [D /_oo J(y)e ¥dy — D—c)\3+—/ f(r)e T dr
—(y+a+ d)} nkge*¢

+oo . Aﬂ Aot
<|D J(y)e 3ydy*D*C>\3+7*(’Y+a+d) nkae™®
= Ag()\3, C)’r]lfge)\s5 = 0.
If £ > &3, then

B(E) = ko + e3¢,
(&) = ky —eae ¢,
%(f = k3 —ege Afa

it follows from (2.14) that

D [ el ~w@ldy — )+ 5[5 - 000 - 7(0) - vie)
/ F)g(@(E — er)dr — (v + a + d)B(E)
< Deg /m J(E—y) (e —e M) dy + cheze
+ 8 < — Ky + o™ —ky —eze™ ™ — k3 + eGeAﬁ)

/ f(r k2+€3€ Me- CT))dT—(’y-i—a—f—d)(k‘g—‘rEge )
= P,(\

From (2.13), we have that
Py(0) = —(y+a+d)(ka+e3)+ 5 (1;1 —ky+ex—ky—e3—kz+ 66) g(ka+es) <O0.
Thus there exists A3 > 0 such that
+oo A
D [ e~ nipt) - w(Elas - ) +8 | - 96~ 7l6) - 16)

/f 9(@E& —cr))dr — (v + a+ d)p(§)
<P2 <0
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for A€ (0,23).
If € < &5, then (&) = kze™€, B(€) = nkoe3¢, we get from (2.14) that

+oo
D [T e~ )B0) - TNy - T () +77(E) — 0+ )(E
< [D /+Oo J(y)e Ydy — D — chs — (6 + d) + vnlze(*“wﬂ kse?s¢

“+oo
S |:D/ J(y)ei/\sydy _— D — C>\5 - (5 + d) + 7]]5’2:| kge)‘5§
— 00 3
= A3()\5, C)k}g@)\sé =0.
If £ > &5, then ¥(€) = k3 +e5e ¢, B(€) < My, we have from (2.14) that

+o00
D / J(E— 9)[By) — TOMy — F(©) +12(6) — (5 + B(E)
+oo

< D55/ J(E—y) (e — e ) dy + chese
+ My — (6 +d) (ks + e5e™ )

< [D€5 /+OO J(y)e’\ydy — Des + ches | e
+ Mo — (6 + d) (ks + e5¢ %)

=: P3(A).

From (2.13), we have that P5(0) = yMs — (6 + d)(ks + €5) < 0. Thus there exists
A5 > 0 such that

+oo
D/_ (& = y)[P(y) — (©)]dy — v’ (€) +17(8) — (5 + d)B(&) < Py(N) < 0

for A € (0, \}).
If £ < &, then ¢(&) = 0, we have from (2.15) that

+oo
D / J(E — 9)[o(y) — $(O))dy — ¢’ (€) — dB(E) + apl€) > ap(€) > 0.

If £ > &, then ¢(&) = k1 — g2, p(§) = ko — e4e7 ¢, it follows from (2.15) that

+oo
D [ (€~ 9)[0ly) — D)y — b/ () — d(E) + ap(€)

+oo
> l:—DEg/ J(y)e’\ydy + Des — chey| e N6
—d (kl — €2€—>\f) +« (kig — €4€_A§)
= P4()\)
From (2.13), we have that P4(0) = —d(k1 — e2) + a(kz —e4) > 0. Thus there exists
A5 > 0 such that

+oo
D / J(E— )[0(y) — SOy — ¢! () — dd(E) + ap(€) = Pi(A) > 0
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for A € (0, A3).
If £ < &, then p(€) = 0. Note that ¢(£) + (&) + ¥(€) < My + My + M3 < 4,
we derive from (2.15) that

+oo
D / J(€— w)lo(y) — o(©)dy — e (€) + B | 5 — B(€) — (€) — B(E)

/ f(r §—cr))dr — (v +a+d)p) > 0.

If € > &4, then

it follows from (2.15) that
D [ e - i) - ety - eg'(€)+ 55 - 3©) - o0 - Fe)
/ F)g(p(E — er)dr — (v + a + dp(€)
> —Dey [ . J(E—y) (e —e M) dy — chege™ ¢
+8 ( — My — ka4 e4e” ™ — M3>

h
/ flr kz —gqe ’\(5_”)> dr— (v+a+d) (/ﬂg - 546_’\5)
= P5

From (2.13), we have that
P5(0) (’74‘0& + d)(k‘g — 84) +ﬁ (A — M1 — kQ + &4 — M3> (k‘g — 64) > 0.
Thus there exists A} > 0 such that
+o00o A o .
D [ e uipty) - p(€dy - (€ + 5 |G - 3E) - (6) - B(6)

/ F@)gll — en)dr — (7 + o+ d)p(€)
(A) >0
for A € (0, \}).
If £ < &, then ¥ (§) = 0, we get from (2.15) that

+oo
D / J(E ) [(y) — H©Oldy — b (€) +79() — (6 + d)p(€) > 7p(€) > 0.
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If £ > &6, then ¥(&) = k3 — gge ¢, ©(&) = ka — e4e7 ¢, we have from (2.15) that
—+o00
D [ €~ n)lbn) - Oy - /() +1pl6) ~ G+ (e

“+oo
> —D66/ J(E —1y) (e”‘y — 67)\5) dy — chege™

— 00

+y (/{ig — €4€_A§) — ((5 + d) (k‘g — €6€_M’:)
+oo
> {—Deg/ J(y)eNdy 4+ Deg — cheg | e

+ v (kiz - €4€_A§) - ((5 + d) (k‘3 - €6€_M’:)
=: Ps(A).

From (2.13), we have that Ps(0) = (k2 — e4) — (6 + d)(ks — €6) > 0. Thus there
exists A\ > 0 such that

+oo
D / J(E — ) [() — w(E)]dy — ' (€) + 7€) — (6 + dyb(€) > Po(A) > 0

for A € (0, Af).
Taking A € (0,min;—1 2, 6{AI}), we see that ®(£) is an upper solution and ®(&)
is a lower solution of system (2.5), respectively. O
Now we can state our main result in this section.

Theorem 2.2. Let %y > 1. Assume that (A1)-(A4) hold, then for any ¢ > c*,
system (2.4) has a traveling wave solution (¢(§),p(§),¥(&)) with speed ¢, which
connects two equilibria (0,0,0) and (k1, ks, ks). That is to say, system (1.6) has a
traveling wave solution with speed ¢, which connects two equilibria (A/d,0,0) and

(S8*,I*, R*). Furthermore, (¢(&),p(£),v(§)) satisfies
Thus,

0<6(8) + (&) +9(6) < (2.16)

Al

3. Nonexistence of traveling waves for %, < 1

In this section, we focus on the nonexistence of traveling waves. We have the
following result.

Theorem 3.1. Suppose that Zy < 1. Then system (2.5) has no nontrivial bounded
nonnegative solution satisfying (2.7) for any ¢ > 0.

Proof. Suppose that (2.5) admits a nontrivial bounded nonnegative solution
(6(£), 0(£),v(§)) satisfying (2.7). We first claim that ¢(§) > 0 for any £ € R.
Indeed, suppose that there exists £y € R such that ¢(&) = 0, then ¢’(£) = 0 and

(J*p—p)(&) >0

with equality holding if and only if ¢ = 0. Since () is nontrivial, we have

(J* ¢ =)&) > 0.
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Then by the second equation of (2.5), we have

0= c¢' (&)
h
= D(7x ¢~ p)en) + 8| G = 0l60) — (&) ~ v(&0)| [ Srlatotea - eryar
— (v +a+dyp(é)

h

= D(7x ¢~ p)en) + 8| G = 0l60) — o(e0) ~ v(&0)| [ FTlatotea — eryar

0
>0,

which reduces to a contradiction.
On the other hand, we have

cg'(§)
h
=D = )€+ 5| G 0~ 9(€) =910 [ el - erir
~(+at )

h
<D o=@+ [ 1l —erldr o+ o+ (o)
Thus, u(z,t) = @(z + ct) satisfies

Qule) < D(Jwu—u)(a,t) + 22 [ f(r)ula,t — r)dr — (v + a+ d)u(z, t),
u(z,s) = p(x +cs) >0, se&[-h,0].

Let wo = supgcg ©(€), it is easy to see that wo > 0. Consider the initial value
problem

w h
dd—gt) = %fo fw(t —7)dr — (v + a+ d)w(t), t>0, 3.1)
w(0) = 2wp > 0.
The comparison principle implies that
0 < u(x,t) < 2wpe, t>0, (3.2)

where \ satisfies

h
At (y+a+d) = %/ f(r)e  dr.
0

Since % < v+ a+d, it is not difficult to get that ReA < 0.
By (3.2) and the invariant form of ¢(£), we get that p(£) =0 for £ € R, which
contradicts that (&) is nontrivial. This completes the proof. O
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