For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 1, 2018, Pages 202-228                                                                DOI:10.11948/2018.202
On a semilinear double fractional heat equation driven by fractional Brownian sheet
Dengfeng Xia,Litan Yan,Xiuwei Yin
Keywords:Mixed fractional heat equation, fractional Brownian sheet, H\"older regularity, Large deviation principle.
Abstract:
      In this paper, we consider the stochastic heat equation of the form $$\frac{\partial u}{\partial t}=(\Delta_\alpha+\Delta_\beta)u+\frac{\partial f}{\partial x}(t,x,u)+\frac{\partial^2W}{\partial t\partial x},$$ where $1<\beta<\alpha< 2$, $W(t,x)$ is a fractional Brownian sheet, $\Delta_\theta:=-(-\Delta)^{\theta/2}$ denotes the fractional Lapalacian operator and $f:[0,T]\times \mathbb{R}\times \mathbb{R}\rightarrow\mathbb{R}$ is a nonlinear measurable function. We introduce the existence, uniqueness and H\"older regularity of the solution. As a related question, we consider also a large deviation principle associated with the above equation with a small perturbation via an equivalence relationship between Laplace principle and large deviation principle.
PDF      Download reader