For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 6, 2019, Pages 2037-2069                                                                DOI:10.11948/20160266
Dynamics of an intra-host model of malaria with a constant drug efficiency
Eddy Takoutsing,Samuel Bowong,David Yemele,Anatole Temgoua
Keywords:Malaria, intra-host models, drug efficiency, stability, sensitivity analysis.
Abstract:
      In this paper, we investigate the dynamics of an intra-host model of malaria with logistic red blood growth, treatment and immune response. We provide a theoretical study of the model. We derive the basic reproduction number $\mathcal R_f$ which determines the extinction and the persistence of malaria within the body of a host. We compute equilibria and study their stability. More precisely, we show that there exists a threshold parameter $\zeta$ such that if $\mathcal R_f\leq\zeta\leq1$, the disease-free equilibrium is globally asymptotically stable. However, if $\mathcal R_f>1$, there exist two malaria infection equilibria which are locally asymptotically stable: one malaria infection equilibrium without immune response and one malaria infection equilibrium with immune response. The sensitivity analysis of the model has been performed in order to determine the impact of related parameters on outbreak severity. The theory is supported by numerical simulations. We also derive a spatio-temporal model, using Diffusion-Reaction equations to model parasites dispersal. Finally, we provide numerical simulations for parasites spreading, and test different treatment scenarios.
PDF      Download reader