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DYNAMICS OF AN INTRA-HOST MODEL OF
MALARIA WITH A CONSTANT DRUG
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Abstract In this paper, we investigate the dynamics of an intra-host model
of malaria with logistic red blood growth, treatment and immune response. We
provide a theoretical study of the model. We derive the basic reproduction
number Rf which determines the extinction and the persistence of malaria
within the body of a host. We compute equilibria and study their stability.
More precisely, we show that there exists a threshold parameter ζ such that
if Rf ≤ ζ ≤ 1, the disease-free equilibrium is globally asymptotically stable.
However, if Rf > 1, there exist two malaria infection equilibria which are
locally asymptotically stable: one malaria infection equilibrium without im-
mune response and one malaria infection equilibrium with immune response.
The sensitivity analysis of the model has been performed in order to deter-
mine the impact of related parameters on outbreak severity. The theory is
supported by numerical simulations. We also derive a spatio-temporal mod-
el, using Diffusion-Reaction equations to model parasites dispersal. Finally,
we provide numerical simulations for parasites spreading, and test different
treatment scenarios.
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1. Introduction

Malaria is the most important parasitic disease that human beings still face. The
number of malaria deaths globally fell from an estimated 839 000 in 2000 (range:
653 000 - 1.1 million), to 438 000 in 2015 (range: 236 000 - 635 000), a decline of
48%. Most deaths in 2015 were in the WHO African Region (90%), followed by the
WHO South-East Asia Region (7%) and the WHO Eastern Mediterranean Region
(2%). The malaria mortality rate, which takes into account population growth,
is estimated to have decreased by 60% globally between 2000 and 2015. Thus,
substantial progress has been made towards the World Health Assembly target of
reducing the malaria burden by 75% by 2015 [30].

Malaria is caused by a parasite that is passed from one human to another by
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the bite of infected Anopheles mosquitoes [30]. After infection, the parasites (called
sporozoites) travel through the bloodstream to the liver, where they mature and
release another form, the merozoites. The parasites enter the bloodstream and infect
red blood cells (RBCs). The parasites multiply inside the RBCs, which then break
open within 48 h to 72 h, infecting more RBCs. The first symptoms usually occur 10
days to 4 weeks after infection, though they can appear as early as 8 days or as long
as one year after infection. On the other hand, common antimalarial drugs only have
effect on the asexual forms of the parasite in the blood (blood schizontocidal effect)
[29]. There is no effect on the exoerythrocytic liver forms or on the gametocytes.
This drug acts against erythrocytic stage of the infection thereby preventing the
progression of blood forms of the parasite which is responsible of relapses in malaria
infection. The malaria parasite, however, has evolved mechanics of resistance to
most of these available antimalarials drugs, morbidity and mortality rise as efficiency
falls [25, 29]. In the treatment of malaria, the World Health Organization (WHO)
recommends the use of combination therapy due to the rising threat to available
drugs and to reduce the intolerable burden of malaria [29]. Both components of
the drug are blood schizonticides, and they have complementary pharmacokinetics
dissimilar modes of action thus providing synergistic antimalarial activity [14].

Human immune system is composed of two subdivisions, the innate (non-specific)
immune system and the adaptive (specific) immune system. The innate immune
system is the first line of defense against invading pathogens while the adaptive im-
mune system acts as a second line of defense which also provides protection against
re-exposure to the same pathogen. HBV replication itself is not directly cytotoxic
to cells, as seen in the large numbers of asymptomatic HBV carriers who have mini-
mal liver injury, despite ongoing intrahepatic replication of the virus. The long-term
aim in the treatment of these patients is to prevent the development of cirrhosis
and hepatocellular carcinoma [23]. The immune responses to HBV antigens are
responsible both for viral clearance during acute infection and for disease patho-
genesis. In infected humans, viral clearance follows the development of a vigorous
immune response associated with acute, self-limited inflammatory liver disease (a-
cute viral hepatitis). Immune responses involved in viral clearance comprise both
humoral and cellular immunity. Major-histocompatibility-complex (MHC) class II-
restricted, CD4+ helper T cells contribute to generation of antibodies against viral
envelope antigens that clear circulating virus particles. MHC class I-restricted,
CD8+ cytotoxic T lymphocytes eliminate infected cells [3, 7, 11].

The dynamics of the malaria parasite are complex due to spontaneous chro-
mosomal mutations. A deep understanding of the disease dynamics would have a
significant impact on the effective prevention and control strategies. Mathemati-
cal modeling and numerical simulations have the potential, and offer a promising
way, to achieve this. Some efforts have been and are still being devoted to the
modeling of this disease. Several mathematical models have been proposed to ex-
plain the dynamics of malaria parasites within the body of an infected host with
and without treatment by an antimalarial drug to gain insight into its transmission
dynamics [14, 16, 26, 29]. These mechanistic within-host models that relate blood
anti-malarial drug concentrations to the parasite-time profile have the potential to
aid anti-malarial drug development.

In this paper, we intend to develop a deterministic intra-host malaria model
which incorporates the key epidemiological and biological features of the infection.
The main interest in studying the malaria infection is to understand the long and
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short term behavior of the dynamics of the infection and to predict whether the
infection will die out or will persist within an infected host. The model considered is
a generalization of the models in [14,16,26,29]. We use nonlinear bounded Michaelis-
Menten-Monod functions to describe how immune cells interact with parasitized red
blood cells (PRBCs) and free merozoites. We take into account the fact that the
population of merozoites decreases due to the infection with healthy red blood cells
as well as the effect of drug therapy. We also replace the traditional mass action with
a standard incidence. We present some global or local analysis of the model, namely
the existence and stability of the malaria-free, malaria infection without specific
immune response, and malaria infection with specific immune response equilibria,
in terms of the basic reproduction number Rf . It is shown that if Rf > 1, the
mezoroites can infect the host and establish a persistent infection. We also extend
the temporal model to a spatio temporal model, which leads to a system of coupled
nonlinear reaction-diffusion equations. We use this model to numerically study
the influence of the space on the distribution of RBCs, PRBCs, free merozoites,
gametocytes and immune effectors. We found that there exists a critical drug
efficiency for which parasites can be cleared from an infection.

This paper is organized as follows. In Section 2, we first present the temporal
model for the within-host dynamics of malaria infection based on the basic under-
standing of biological interactions between red blood cells (RBCs), parasitized red
blood cells (PRBCs), free merozoites, gametocytes and immune effectors, and some
simple assumptions about the immune system. We present the quantitative and
qualitative analysis of the model. The sensitivity analysis of the model is carried
out to identify the most influential parameters on the model output variables, that
is the most robust estimations are required. Numerical simulations are provided to
support theoretical results. Afterward, we extend the temporal model to a spatio-
temporal model, which leads to a system of coupled nonlinear reaction-diffusion
equations in Section 3. We numerically study the model parasites dispersal. Con-
cluding remarks round up the paper in Section 4.

2. Temporal model

2.1. Model formulation

Herein, we present a temporal model of the dynamical transmission of malaria with-
in a host. The interaction of malaria parasites, RBCs, PRBCs, immune effectors
and gametocytes is presented in the model. It is described by a system of five or-
dinary differential equations that represent the density of RBCs x, PRBCs y, free
merozoites m, immune effectors I and gametocytes g. The dynamics is governed by
the following set of biological assumptions: (i) healthy RBCs are regenerated; (ii)
healthy cells transition to an infected state due to the infection by free mezorotes;
(iii) PRBCs die at an increased rate due to the infection; (iv) PRBCs and free mero-
zoites are killed by immune effectors; (v) mezoroites are produced by PRBCs; (vi)
free mezoroites die at a specified rate; (vii) free mezoroites also disappear due to
the interaction with RBCs; (viii) immune effectors are regenerated and (ix) PRBCs
and free mezoroites stimulate the proliferation of immune cells.

RBCs emerge from bone marrow into the circulation in uninfected, healthy
adults, and they are removed by phagocytosis 120 days later [20]. A density of
approximately 5 million RBCs per µl is maintained in male adults [20]. We model
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the rate of RBCs production as sensitive to changes in the rate of RBCs destruction.
Here, the population of RBCs is assumed to maintain itself logistically so that

RBCs recruitment is one in logistic form: η

(
1− x+ y

K

)
where K is the maximum

carrying capacity for RBCs and η is the maximal growth rate.

Successful invasion of RBCs by a parasite depends on direct contact between
the two and their population size. We take the contact process itself as random,
with contact probabilities proportional to x(t) and m(t), the densities of uninfected
susceptible RBCs and free merozoites, respectively. It has been reported that up
to 500, 000 blood cells per µl are parasitized with P. falciparum [10]. Thus, free

merozoites infect RBCs at rate
βxm

x+ y
where β describes the rate or probability of

successful infection by merozoites. The infected red blood cells die at rate µy per
day and the invasion of RBCs induces a specific immune response.

We also take into account the treatment effects of antimalarial drugs. We assume
that the efficiency of drugs is constant over time, that is f ∈ [0, 1]. The drugs
efficiency in this context is the probability for which the drugs inhibit parasites
growth by reducing the rate production of free merozoites. The production of
free merozoites occurs when PRBCs burst. PRBCs burst during death, hence the
number of free merozoites produced depends on the death rate of PRBCs. An
average of γ merozoites are released per each bursting PRBC. Thus, the production
of free merozoites occurs at rate γ(1 − f)µyy. The population of free merozoites

decreases due to the infection with RBCs at rate
βuxm

x+ y
where u ∈ [0, 1] is a

modification parameter. Also, free merozoites suffer from a natural death µm and
are eliminated from circulation by immune cells.

Immune responses against malaria infections are complex and stages-specific.
The malaria parasite induces a specific immune response which can stimulate the
release of cytokines and activate the host’s monocytes, neutrophils, T-cells and nat-
ural killer cells to react to the different stage parasite [10]. It would be reasonable
to include various innates. However, for the sake of simplicity and analysis, we only
consider the immunity effectors as the capacity of the immune response of the host
to infect cells by parasites. Previously, the killing of PRBCs by immune effectors
has been modeled by a sample mass-action term depending only on the product of
the density of the parasite and the immune cells which is an unbounded bilinear
function [2]. Taking into account the fact that cell proliferation can saturate and
that there is a handling time in immune responses, the more reasonable bound-
ed Michaelis-Menten-monod function was firstly used by Agur et al. [1]. Though
there are no clinical or experimental data to support that the interaction between
immune response and malaria parasites satisfies the Michaelis-Menten-monod func-
tion. We follow De Boer and Perelson [9], Pilyugin and Antia [22], and Chiyaka
et al. [8] to use the functions ky

Iy
1+Dyy

and km
Im

1+Dmm
to described the killing of

PRBCs y(t) and free merozoites m(t) by the immune effectors I(t) where ky and
km are respectively, the rates of successful removal of PRBCs and free merozoites
by immune effectors and Dy and Dm are respectively, the constant saturations that
simulate immune cells to grow at half of their maximum rate. It is also assumed that
the presence of infected cells stimulates the proliferation of immune cells at rates
ρy

y
1+Dyy

and ρm
m

1+Dmm
where ρy and ρm are the proliferation rate of lymphocytes.

We point out that the terms y
1+Dyy

and m
1+Dmm

describe, respectively, how PRBCs
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and free merozoites stimulate the activation of immune effectors. The gametocytes
are produced by PRBCs at rate δ and die at rate µg. They are regarded to describe
the humoral and cell-mediated immunity [8].

With these definitions and assumptions, the interaction involving the densities
of RBCs, PRBCs, free merozoites, immune effectors and gametocytes is given by
the following temporal system:

ẋ = ηx

(
1− x+ y

K

)
− β xm

x+ y
,

ẏ = β
xm

x+ y
− ky

Iy

1 +Dyy
− µyy,

ṁ = γ(1− f)µyy − µmm− km
Im

1 +Dmm
− βu xm

x+ y
,

İ = I
(
ρy

y
1+Dyy

+ ρm
m

1+Dmm

)
+ aI − bI2,

ġ = δy − µgg.

(2.1)

The parameter values used for numerical simulation are given in Table 1.

Table 1. Numerical values for parameters of model system (2.1).

Parameter Description Estimated value/range Source
η Production rate of RBC 1 cells/ml/day Assumed
K Carrying capacity of RBCs 120/day [2]
β Contact rate between free merozoites and RBCs 16/cell/day [2]
u Modification parameter 0 ≤ u ≤ 1 Assumed
f Efficiency of drug 0 ≤ f ≤ 1 Assumed
µy Death rate of PRBCs 0.2/day [2]
µm Death rate of free merozoites 72/day [2]
µg Death rate of gametocytes 0.25/day [4]
γ Merozoite mean rate produce by PRBCs 16 [2]
Dy 1/Dy half saturation constant of PRBCs 0.5 ml/cell [2]
Dm 1/Dm half saturation constant of free merozoites 0.667 ml/cell [8]
ρy Immunosensitivity of PRBCs 0.05/cell/day [2]
ρm Immunosensitivity of free merozoites 0.1/cell/day [2]
ky Immune effectors reaction against PRBCs 0.05/cell/day [2]
km Immune effectors reaction against free merozoites 0.1/cell/day [2]
a Increasing rate of immune effectors 0.05/day [2]
b Regulation rate of immune effectors 0.01 RBC/ml−1day−1 [2]
δ Production rate of gametocytes 0.03 ml−1 day−1 [4]

2.2. Basic properties

Herein, we study the basic properties of the solutions of model system (2.1), which
are essential in the proofs of stability results. We have the following result.

Theorem 2.1. Model system (2.1) is a dynamical system on the biologically feasible
compact domain:

Ω=

{
(x, y,m, I, g)∈R5

+, x(t)≤K, y(t)≤K, m(t)≤ γ(1−f)µyK

µm
,

I(t)≤Im, g(t) ≤ δK

µg

}
,

(2.2)

where Im =
1

b

(
a+

ρy
Dy

+
ρm
Dm

)
.
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Proof. The proof is provided in two steps.
Step 1: We show that the solution (x(t), y(t),m(t), I(t), g(t)) of model system

(2.1) corresponding to initial conditions such that x(0) > 0, y(0) > 0, m(0) >
0, I(0) > 0 and g(0) > 0 are nonnegative.

Consider the first equation of model system (2.1):

dx

dt
= ηx

(
1− x+ y

K

)
− β xm

x+ y
.

Let m(t) = −η
(

1− x+ y

K

)
, n(t) = β

m

x+ y
and ρ(t) = exp(

∫ t
0
(n(u) + m(u))du).

Then, the time derivative of ρ(t)x(t) satisfies

d(ρ(t)x(t))

dt
= x(t)dρ(t)dt + ρ(t)dx(t)

dt ,

= (x(t)m(t) + x(t)n(t))ρ(t) + ρ(t)(−x(t)m(t)− x(t)n(t)),

= 0.

(2.3)

This implies that ρ(t)x(t) = ρ(0)x(0). Since ρ(t) > 0, one can deduce that x(t) ≥ 0
for all t ∈ R+.

Similarly, it can be shown that the variable I(t) remains nonnegative for all
t > 0.

Now, let us show that the variables y(t) and m(t) remain nonnegative for all
t ≥ 0. Let y(t) > 0, m(t) > 0, then by a continuity argument of the functions y(t)
and m(t), they are two positive real numbers t01 > 0 and t02 > 0 in such a way that
y(t) > 0 for all 0 < t < t10 and m(t) > 0 for all 0 < t < t02. We shall now prove that
t01 = +∞ and t02 =∞.

Assume the contradiction that t01 < ∞ and t02 < ∞, then y(t) and m(t) will
vanish each for at least once. Let tm1 and tm2 be the first real numbers such that
y(tm1 ) = 0 and m(tm2 ) = 0, respectively. From the definitions of t01 and t20, one has
tm1 > t01 and tm2 > t02 and

y(t) > 0, ∀0 < t < tm1 , y(tm1 ) = 0 and m(t) > 0, ∀0 < t < tm2 , m(tm2 ) = 0. (2.4)

Without loss of generality, suppose tm1 ≤ tm2 . Then, from model system (2.1),
one has

y′(tm1 ) = βm(tm1 ) > 0 and m′(tm2 ) = γ(1− f)µyy(tm2 ). (2.5)

The above equation implies the existence of two numbers tm1
1 > tm1 and tm2

2 > tm2
such that

y(t) > 0, ∀0 < t < tm1
1 and m(t) > 0, ∀0 < t < tm2

2 . (2.6)

Putting the relations (2.4) and (2.6) together and use the continuity of y(t) and
m(t), one can conclude that tm1 and tm2 are extrema (more precisely, a minima)
of y(t) and m(t), respectively. Moreover, since y(t) and m(t) are differentiable
functions on R, one has y′(t1m) = 0 and m′(t2m) = 0. This is a contradiction since
from (2.5), y′(tm1 ) > 0 and m′(tm2 ) > 0. Therefore, t01 = +∞ and t02 = +∞.

Since y(t) and m(t) are always non negative, using a standard comparison the-
orem, one has

I(t) ≥ a

C1ae−at + b
> 0,
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where C1 is a positive constant. Therefore, I(t) is always positive. Similarly, it can
be shown that the variable g(t) remains nonnegative for all t > 0.

Step 2: Now, we prove the boundedness of the trajectories of model system
(2.1).

Let T = x+ y, then from the first and second equations in model system (2.1),
one has

Ṫ (t) = ηx
(
1− T

K

)
− µyy − ky Iy

1+Dyy
,

≤ ηx
(
1− T

K

)
,

≤ ηT
(
1− T

K

)
.

Integrating the above differential inequality gives

T (t) ≤ KT (0)eηt

K + T (0)(eηt − 1)
,

where T (0) is the initial condition of T (t). Applying Birkhoff’s and Rota’s theorem
on differential inequality [5], as t goes to the infinity, one can deduce that T (t) ≤ K,
∀t ∈ R+. This implies that x(t) ≤ K and y(t) ≤ K for all t ∈ R+.

From the third and fifth equations of model system (2.1), using the fact that
y(t) ≤ K, one has

ṁ ≤ γ(1− f)µyK − µmm and ġ ≤ δK − µgg.

Solving the above differential inequalities yields

m(t) ≤ γ(1− f)µyK

µm
(1−e−µmt)+m(0)e−µmt and g(t) ≤ δK

µg
(1−e−mugt)+g(0)e−µgt,

where m(0) and g(0) are the initial conditions of m(t) and g(t), respectively. Thus,
as t→∞, one can deduce that

m(t) ≤ γ(1− f)µyK

µm
and g(t) ≤ δK

µg
.

Finally, consider the last equation of model system (2.1). Using the fact that
y(t)

1+Dyy(t) ≤
1
Dy

and m(t)
1+Dmm(t) ≤

1
Dm

, one has

I ′(t) ≤ AI(t)
(

1− I(t)
Im

)
,

where A = a+
ρy
Dy

+ ρm
Dm

and Im =
1

b

(
a+

ρy
Dy

+
ρm
Dm

)
. A simple integration gives

I(t) ≤ ImI(0)eAt

Im + I(0)(eAt − 1)
.

It then follows that as t→∞, I(t) ≤ Im.
Combining Step 1 and Step 2, Theorem 1 follows from the classical theory of

dynamical systems. This concludes the proof.
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2.3. The disease free equilibrium (DFE) and its stability

The DFE state represents a condition where there is no infection or where the
infection can be always be eradicated. Model system (2.1) has four disease-free
equilibria, obtained by setting the right-hand sides of equations in the model to
zero with m = 0, given by

E0 =
(
K, 0, 0,

a

b
, 0
)
, E1

0 = (0, 0, 0, 0, 0), E2
0 =

(
0, 0, 0,

a

b
, 0
)

and E3
0 = (K, 0, 0, 0, 0).

(2.7)

The equilibria E1
0 , E2

0 and E3
0 are always unstable.

Indeed, the Jacobian matrix of model system (2.1) at E1
0 is

J(E1
0) =



η 0 0 0 0

0 −µy 0 0 0

0 γ(1− f)µy −µm 0 0

0 0 0 a 0

0 δ 0 0 −µg


.

Since, η > 0 is an eigenvalue of J(E1
0), it follows that E1

0 is an unstable equilibrium
for model system (2.1).

At E2
0 , the Jacobian of model system (2.1) is

J(E2
0) =



η 0 0 0 0

0 −ky ab − µy 0 0 0

0 γ(1− f)µy −µm − kma
b 0 0

0 ρy
a
b ρm

a
b −a 0

0 δ 0 0 −µg


,

which implies that E2
0 is also unstable because η > 0 is an eigenvalue of J(E2

0).
Also, the Jacobian matrix of model system (2.1) at E3

0 is

J(E3
0) =



−η −η −β 0 0

0 −µy β 0 0

0 γ(1− f)µy −µm − βu 0 0

0 0 0 a 0

0 δ 0 0 −µg


.

It then follows that a > 0 is an eigenvalue which implies that the equilibrium E3
0 is

unstable.
Then, the realistic disease-free equilibrium is E0 =

(
K, 0, 0,

a

b
, 0
)

.
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2.3.1. Basic reproduction number

The Jacobian matrix of model system (2.1) at E0 is

J(E0) =



−η −η −β 0 0

0 −kyab − µy β 0 0

0 γ(1− f)µy −µm − kma
b − βu 0 0

0 ρy
a
b ρm

a
b −a 0

0 δ 0 0 −µg


.

Since −η < 0, −µg < 0 and −a < 0 are the eigenvalues of J(E0), the stability of the
Jacobian matrix J(E0) is associated to the stability of the following sub-matrix:

J0 =

−kyab − µy β

γ(1− f)µy −µm − kma
b − βu

 .

A sufficient condition for J0 to be stable is

βγ(1− f)µy
(kyI0 + µy)(µm + kmI0 + βu)

< 1,

where I0 = a/b. Thus, the basic reproduction number of model system (2.1) is

Rf =
βγ(1− f)µy

(kyI0 + µy)(µm + kmI0 + βu)
. (2.8)

The basic reproductive number Rf of the malaria parasite is defined as the number
of secondary PRBCs produced by a free merozoite in a completely RBCs at the
onset of infection. If Rf ≤ 1, then on average a free merozoite produces less than
one new PRBCs and the infection cannot grow. However, ifRf > 1, then on average
a free merozoite produces more than one new PRBC and infection is maintained.

For a better control on the disease, the global asymptotic stability (GAS) of the
DFE is needed. Actually, enlarging the basin of attraction of E0 to be a part or
the entire Ω for the model under consideration is a more challenging task involving
relatively new result.

2.3.2. Global stability of the disease free equilibrium

Herein, we focus on the global stability of the disease-free equilibrium E0 of model
system (2.1). To do so, we use the result of Kamgang and Sallet [15].

Following Kamgang and Sallet [15], model system (2.1) can be written in the
following pseudo-triangular form: ẇ1 = A1(w)(w1 − w∗1) +A12(w)w2,

ẇ2 = A2(w)w2,
(2.9)

where w1 = (x, I)T denotes the non infected classes (i.e. RBCs and immune effectors
), w2 = (y,m, g)T represents the infected classes (i.e. PRBCs, merozoites and
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gametocytes), w = (w1, w2)T , w∗1 = (K, I0) is the non zero components of the
disease-free equilibrium,

A1(w) =

 ηx
x−K (1− x+y

K ) 0

0 aI−bI2
I− a

b

 , A12(w) =

 0 β x
x+y

ρy
I

1+Dyy
ρm

I
1+Dmm

 and

A2(w) =


−µy − ky I

1+Dyy
β x
x+y 0

γ(1− f)µy −µm − km I
1+Dmm

− βu x
x+y 0

δ 0 −µg

 .

One of the eigen values is −µg < 0, thus the stability of the matrix A2(w) is
reduced to the study of the stability of 2x2 matrix given by

Â2(w) =

−µy − ky I
1+Dyy

β x
x+y

γ(1− f)µy −µm − km I
1+Dmm

− βu x
x+y

 . (2.10)

The conditions H1 −H5 below must be met to guarantee the global asymptotic
stability (GAS) of the DFE E0.

H1 : Model system (2.9) is defined on a positive invariant set D of Ω. The system
is dissipative on D.

H2 : The sub-system ẇ1 = A1(w1, 0)(w1 − w∗1) is globally asymptotically stable
at the equilibrium w∗1 on the canonical projection of D on R2

+.

H3 : The matrix Â2(w) is Metzler and irreducible for any given w ∈ D (A metzler
matrix is a matrix with off-diagonal entries nonnegative).

H4 : There is an upper-bound matrix Ā2 for M = {Â2(w), w ∈ D} with the
property that either Ā2 /∈ M or, if Ā2 ∈ M (i.e, Ā2 = max

D
M), then for any

w̄ ∈ D in such a way that Ā2 = Â2(w̄), w̄ ∈ D×{0}(i.e., the points where the
maximum is realized are contained in the disease-free sub-manifold).

H5 : α(Ā2) ≤ 0 where α(Ā2) denotes the largest real part of the eigenvalues of
Ā2.

The result of Kamgang-Sallet approach [15] uses the algebraic structure of model
system (2.9), namely the fact that A1(w) and Â2(w) are Metzler matrices. The
matrices A1(w) and Â2(w) are Metzler. Since the matrix Â2(w) should to be
irreducible, we will reduce the domain to

D = {(w1, w2) ∈ Ω, w1 6= 0} . (2.11)

Then, the set D is positively invariant because only the initial point of any trajectory
can have w1 = 0 (see Theorem 2.1). Indeed, from the first and fourth equations of
model system (2.1), one has x′ > 0 and I ′ > 0 whenever x(0) 6= 0 and I(0) 6= 0.
Thus,

Â2(w) is Metzler and irreductible for all w ∈ D. (2.12)
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The sub-system:
ẇ1 = A1(w1, 0)(w1 − w∗1),

can be expressed as 
ẋ = ηx

(
1− x

K

)
,

İ = aI − bI2.

(2.13)

Resolving the above equations and taking the limit of solutions when t go to the
infinity yields

lim
t→∞

x(t) = K and lim
t→∞

I(t) =
a

b
. (2.14)

Therefore, the reduced model system (2.13) is globally asymptotically stable at the
equilibrium x∗1 = (K, ab ), on the sub-domain {w ∈ D, w2 = 0}. Then, hypothesis
H2 is satisfied.

The theorem of Kamgang and Sallet (see [15], Theorem 4.3) gives the GAS of
the DFE of a dissipative system of the form (2.9) which satisfies (2.12) and (2.14)
provided there exists a matrix Â2(w) with the following additional properties:

Â2(w) ≤ Ā2, w ∈ D,

if Â2(w̄) = Ā2 for some w̄ = (w̄1, w̄2)T ∈ D then w̄2 = 0,

α(Ā2) ≤ 0.

(2.15)

Using the fact that x
x+y ≤ 1, the upper bound of Â2(w) is

Ā2 =

 −µy β

γ(1− f)µy −µm

 . (2.16)

The equality Â2(w) = A2 does not hold in D. Indeed, Â2(w) = A2 implies that
y = I = 0 and u = 0. However, I > 0 in D which implies that Â2(w) 6= A2, ∀w ∈ D.
Therefore, the first and second conditions in (2.15) hold. Ā2 is a Metzler matrix
which satisfies the stability condition of Kamgang and Sallet [15]. Moreover, the
trace of matrix Ā2 is −(µy + µm) < 0 and the determinant is µyµm − γ(1− f)µyβ.
Thus, Ā2 is stable if

µyµm − γ(1− f)µyβ ≥ 0,

that is,
Rf ≤ ζ, (2.17)

where
ζ =

µyµm
(µy + kyI0)(µm + kmI0 + βu)

< 1. (2.18)

We can now apply Theorem 4.3 in Kamgang and Sallet [15] and conclude that under
condition (2.17), the disease-free equilibrium (x0

1, 0) is GAS in D. From Eq. (2.11)
for the points of D where x1 = 0, and from Eq. (2.17) the disease-free equilibrium
is GAS on Ω.

We have established the following result.
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Theorem 2.2. : The disease-free equilibrium E0 of model system (2.1) is globally
asymptotically stable on Ω if Rf ≤ ζ < 1.

Remark 2.1. : When ζ ≤ Rf < 1, model system (2.1) can exhibit the phenomenon
of backward bifurcation where the locally asymptotically stable DFE co-exists with
a locally asymptotically stable endemic equilibrium. However, numerical results
tend to support that E0 is GAS in R5

+.

Figure 1 shows the GAS of the disease-free equilibrium E0 using various initial
conditions when β = 10 and f = 0.6 (so that ζ = 0.4295, Rf = 0.3818 < ζ).
All other parameter values are given in Table 1. This figure illustrates that the
trajectories of model system (2.1) converge to the disease-free equilibrium. This
means that the infection disappears within the body of a host when Rf ≤ ζ and
the disease is controllable within the host (see Theorem 2).
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Figure 1. Time plot of densities of (a) RBCs x(t), (b) PRBCs y(t), (c) free merozoites m(t), (d) immune
effectors I(t) and (e) gametocytes g(t) using various initial conditions when β = 10 and f = 0.6 (so that
ζ = 0.4295, Rf = 0.3818 < ζ). All other parameter values are given in Table 1.
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Now, we investigate the effect of the malaria treatments on the dynamics of
model system (2.1). A key parametrization to the model is the basic reproduction
number Rf that measure the number of secondary infections generated by a single
free merozoite in an environment where the drug is used as a control strategy. The
primary focus of drug therapy is the possibility of clearing free merozoites. Thus,
if Rf ≤ ζ, then free merozoites are cleared.

Suppose that at time t = 0, the drug is applied to an infected host. The basic
reproduction number of model system (2.1) in the absence of treatment (i.e. f = 0)
is

R0 =
βγµy

(kyI0 + µy)(µm + kmI0 + βu)
. (2.19)

With this in mind, one has
Rf = R0(1− f). (2.20)

Observe that Rf ≤ R0. Equality is only achieved when f = 0, i.e., when there is no
treatment. Note that the constraint Rf ≤ ζ defines implicitly a critical treatment
efficacy f > fc that must be achieved for the clearance of the parasites:

fc = 1− µyµm
R0(kyI0 + µy)(µm + kmI0 + βu)

. (2.21)

Thus, the malaria parasites can be eradicated within the host of an infected individ-
ual if f > fc. Treating an infected host at the critical level fc does not instantly lead
to parasite clearance. The immunity level within the host requires time to build up
and at the critical level it may take some time before the required herd immunity is
achieved. Thus, from a public health perspective, fc acts as a lower bound on what
should be achieved, with higher levels of treatment leading to a more rapid elimi-
nation of malaria parasites. For a better control of the disease and avoid the case
when ζ ≤ Rf < 1, the threshold parameter ζ should be large as possible, that is
very close to the unity. We stress that the case when ζ ≤ Rf < 1 corresponds to the
case when model system (2.1) may exhibit the phenomenon of backward bifurcation
where the locally asymptotically stable DFE co-exists with a locally asymptotically
stable endemic equilibrium. To do so, we perform the sensitivity analysis of the
threshold parameter ζ.

Sensitivity analysis is used to determine the relative importance of model param-
eters to malaria parasite transmission and its prevalence. We perform the analysis
by calculating the sensitivity indices of the threshold parameter ζ. Sensitivity analy-
sis is commonly used to determine the robustness of model predictions to parameter
values, since there are usually errors in data collection and estimated values. We
are thus interested in parameters that significantly affect the threshold parameter
ζ since these are the parameters that should be taken into consideration when con-
sidering an intervention strategy. Since the threshold parameter ζ is a differentiable
function of the parameters, the sensitivity index may alternatively be defined using
partial derivatives. For instance, the computation of the sensitivity index of ζ with
respect to u using the parameter values in the Table 1 is given by

ζ∏
u

=

(
∂ζ

∂u

)(
u

ζ

)
= − βu

(kyI0 + µy)(µm + kmI0 + βu)
< 0. (2.22)

This shows that ζ is an decreasing function of u and the parameter u does not
have an influence on the threshold parameter ζ. We tabulate the indices of the
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remaining parameters in Table 2. From Table 2, parameters whose sensitivity in-
dices have negative signs decrease the value of ζ as their values increase, while those
with positive signs increase the value of ζ as they increase. On can observe that
the parameters µy, b and µm are the most influential parameters of the threshold
parameter ζ. Thus, when these parameters increase, the threshold parameter ζ
will also increase and can approach the unity which is better for the control of the
infection within an infected host.

Table 2. Sensitivity indices for ζ.

Parameter Index Parameter Index
µy 0.552 β -0.042
ky -0.555 µm 0.048
km -0.006 u -0.042
a -0.562 b 0.562

Now, we numerically investigate the effect of drug efficiency on the dynamics of
model system (2.1). The time evolution of the trajectories of model system (2.1)
using various initial conditions when β = 16, fc = 0.7188 and f = 0.8 (so that
ζ = 0.4227, R0 = 1.5030 > 1, Rf = 0.3006 < ζ and f > fc) is depicted in Fig. 2.
All other parameters values are given in Table 1. It is evident that with the chosen
parameters, if f > fc the merozoites are cleared within the body of an infected host
due to the effect of drug.

2.4. Infection endemic equilibria and their stabilities

2.4.1. Infection equilibrium without immune response and its stability

Let E = (x, y,m, I, g) be any endemic equilibrium of model system (2.1) with x 6= 0,
y 6= 0, m 6= 0, I = 0 and g 6= 0. Then, x, y, m, I and g satisfy the following system
of equations: 

ηx

(
1− T

K

)
− β x̄m̄

T
= 0,

β
x̄m̄

T
− µyy = 0,

γ(1− f)µyy − µmm− kmmV − βu
x̄m̄

T
= 0,

δy − µgg = 0,

(2.23)

where T = x+ y.
It would be pointed out that the basic reproduction number of model system

(2.1) without immune response is

R̃0 =
βγ(1− f)

µm + βu
, (2.24)

is the basic reproduction number of model system (2.1) without immune response.
From the first equation of (2.23), one has

m =
η

β
T

(
1− T̄

K

)
. (2.25)



Dynamics of an intra-host model of malaria 2051

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Time (days)

 R
B

C
s
 x

(t
)

(a)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (days)

 P
R

B
C

s
 y

(t
)

(b)

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (days)

M
e
ro

z
o
it
e
s
 m

(t
)

(c)

0 20 40 60 80 100 120
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Time (days)

Im
m

u
n
e
 r

e
s
p
o
n
s
e
 I
(t

)
(d)

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (days)

G
a
m

e
to

c
y
te

 g
(t

)

(e)

Figure 2. Time plot of densities of (a) RBCs x(t), (b) PRBCs y(t), (c) free merozoites m(t), (d) immune
effectors I(t) and (e) gametocytes g(t) using various initial conditions when β = 16, fc = 0.7188 and
f = 0.8 (so that ζ = 0.4227, R0 = 1.5030 > 1, Rf = 0.3006 < ζ and f > fc). All other parameter
values are given in Table 1.

Plugging the above expression of m in the second equation of (2.23) gives

y =
η

µy
x

(
1− T

K

)
. (2.26)

Replacing the expressions of y and m given in Eqs. (2.25) and (2.26) in the third
equation of (2.23) yields

[β[γ(1− f)− u]− µm]x = µmy. (2.27)

Combining Eqs. (2.26) and (2.27) gives

T =
K(µyµm + µmη + µyβu)(1− τ0)

µmη
, (2.28)

where

τ0 =
βγµy(1− f)

µmη + µy(µm + βu)
. (2.29)
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Then, using Eqs. (2.25), (2.26) and (2.27), one has



x =
K(µyµm + µmη + µyβu)(1− τ0)

ηβ(γ(1− f)− u)
,

y =
K(βu+ µm)(µyµm + µmη + µyβu)(R̃0 − 1)(1− τ0)

µmβη[(1− f)γ + u]
,

m =
K(βu+ µm)(µyµm + µmη + µyβu)(R̃0 − 1)(1− τ0)

βηµ2
m

,

g =
Kδ(βu+ µm)(µyµm + µmη + µyβu)(R̃0 − 1)(1− τ0)

µgµmβη[(1− f)γ + u]
,

(2.30)

which can be rewritten in terms of R̃0 as

x =
K
(
µmη − µy(µm + βu)(R̃0 − 1)

)
η
(
µmR̃0 + βu(R̃0 − 1)

) ,

y =
K(µm + βu)

(
µmη − µy(µm + βu)(R̃0 − 1)

)
(R̃0 − 1)

ηµm

(
µmR̃0 + βu(R̃0 − 1)

) ,

m =
Kµy(µm + βu)

(
µmη − µy(µm + βu)(R̃0 − 1)

)
(R̃0 − 1)

β η µm2
,

g =
Kδ(µm + βu)

(
µmη − µy(µm + βu)(R̃0 − 1)

)
(R̃0 − 1)

ηµmµg

(
µmR̃0 + βu(R̃0 − 1)

) .

(2.31)

Note that τ0 < R̃0. Thus if τ0 < 1 and R̃0 > 1, then x > 0, y > 0, m > 0 and
g > 0.

We have proved the following result.

Lemma 2.1. : Model system (2.1) has one endemic equilibrium without immune
effectors E = (x, y,m, 0, g) where x ,y, m and g are defined as in Eq.(2.31) whenever
τ0 < 1 and R̃0 > 1.

Now, we investigate the stability of the endemic equilibrium E. The Jacobian
matrix of model system (2.1) at E is

J(E) =



2µy(β u+µm)(R̃0−1)−η µm

β u(R̃0−1)+µmR̃0

2µy(β u+µm)(R̃0−1)−η µm

β u(R̃0−1)+µmR̃0

µ2

fγ−γ+u 0

µy(R̃0−1)2(β u+µm)2

µm(β u(R̃0−1)+µmR̃0)
− 2(R̃0−1)uβ+(2R̃0−1)µm

µm(β u(R̃0−1)+µmR̃0)
− µm

fγ−γ+u 0

uµy(R̃0−1)2(β u+µm)2

µm(β u(R̃0−1)+µmR̃0)
−µy(β f2γ2−2 β fγ2+β γ2−β u2−uµ2)

β (fγ−γ+u) −µmγ (f−1)
fγ−γ+u 0

0 δ 0 −µg


.

The eigenvalues of the jacobian matrix J(E) are −µg and the eigenvalues of the
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sub-matrix

J0(E) =


2µy(β u+µm)(R̃0−1)−η µm

β u(R̃0−1)+µmR̃0

2µy(β u+µm)(R̃0−1)−η µm

β u(R̃0−1)+µmR̃0

µ2

fγ−γ+u

µy(R̃0−1)2(β u+µm)2

µm(β u(R̃0−1)+µmR̃0)
− 2(R̃0−1)uβ+(2R̃0−1)µm

µm(β u(R̃0−1)+µmR̃0)
− µm

fγ−γ+u

uµy(R̃0−1)2(β u+µm)2

µm(β u(R̃0−1)+µmR̃0)
−µy(β f2γ2−2 β fγ2+β γ2−β u2−uµ2)

β (fγ−γ+u) −µmγ (f−1)
fγ−γ+u

 .

The characteristic equation of J0(E) is

P (λ) = Λ3 + a1Λ2 + a2Λ + a3, (2.32)

where

a1 =
µm((µm + βu)R̃0 + η + µy)

β u
(
R̃0 − 1

)
+ µmR̃0

> 0,

a2 = µy((fγ − γ + u)
2

(2 fγ µy − 2 γ µy − uµm + 2uµy)β2 + µyµm (fγ − γ + u)
2

× (2µy − µm + η)β + γ µ2
3 (1− f) (µy + η))/β(γ(1− f)− u)2µm > 0,

a3 =
µy(µm + βu)(R̃0 − 1)(µmη − µy(µm + βu)(R̃0 − 1))

β u
(
R̃0 − 1

)
+ µmR̃0

> 0.

Then, using the Routh-Hurwitz stability criterion, the steady state associated with
the characteristic equation (2.32) is stable due to the fact that a1, a2 and a3 are
non negative and a1a2 − a3 > 0. Hence, Ē is locally asymptotically stable.

Figure 3 shows the local stability of the endemic equilibrium without immunity
response. Using various initial conditions when β = 0.8 and f = 0.2 ( so that
τ0 = 0.2362 < 1 and R̃0 = 1.3913 > 1) all other parameters values are given in Table
1. From this figure, the trajectories of model system 2.1 in absence of immunity
response converge to the endemic equilibrium. This means that the disease persists
in an infected host which supports result of Lemma 1.

2.4.2. Endemic equilibrium with immune response and its stability

When Rf > 1, the DFE is unstable and model system (2.1) can have an endemic e-
quilibrium point. Let E∗ = (x∗, y∗,m∗, I∗, g∗) be any endemic equilibrium of model
system (2.1) with m∗ 6= 0 and I∗ 6= 0. The explicit form of the endemic equilibrium
corresponding to an infection is quite cumbersome because of the complexity of the
model, we have managed to obtain some relationships that can be used to determine
the existence of an endemic equilibrium. To this end, let

U =
I∗

1 +Dyy∗
> 0 and V =

I∗

1 +Dmm∗
> 0. (2.33)
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Figure 3. Time plot of densities of (a) RBCs x(t), (b) PRBCs y(t), (c) free merozoites m(t), (d)
gametocytes g(t) using various initial conditions when β = 8 and f = 0.2 (so that τ0 = 0.2362 < 1,

R̃0 = 1.3913 > 1). All other parameter values are given in Table 1.

Then, the components of x∗, y∗, m∗, I∗ and g∗ of E∗ satisfy the following system
of equations:



ηx∗
(

1− x∗ + y∗

K

)
− β x∗m∗

x∗ + y∗
= 0,

β
x∗m∗

x∗ + y∗
− kyy∗U − µyy∗ = 0,

γ(1− f)µyy
∗ − µmm∗ − kmm∗V − βu

x∗m∗

x∗ + y∗
= 0,

ρyUy
∗ +mρmV + aI∗ − b(I∗)2 = 0,

δy∗ − µgg∗ = 0.

(2.34)

From the first, second and third equations of (2.34), one has

x∗ =
K[A1 + U(V km + β u+ µm)ky + η (V km + µm)] (Uky + µy)

βη(((1− f) γ − u)µy − Uuky)
,

y∗ =
B1

[(1− f) γ − u]µy − Uuky
and m∗ =

B1

(V km + µm)
,

(2.35)
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where

A1 = [[(−1 + f ] γ + u)β + V km + µm]µy and

B1 = −K (A+ Uβ uky + (V km + µm)(Uky + η))(A+ U(V km + β u+ µmky))

βη(V km+ µm)
.

(2.36)
With in this mind, from the fourth and fifth equations of (2.34), one has

I∗ =
a+

√
4bρmm∗ + 4bρyy∗ + a2

2b
and g∗ =

δy∗

µg
. (2.37)

From Eq. (2.33), one has that

U =
I∗

1 +Dyy∗
and V =

I∗

1 +Dmm∗
. (2.38)

Now, plugging Eq. (2.37) into Eq. (2.38) gives

U = UF (U, V ) and V = V G(U, V ), (2.39)

where

F (U, V ) =

(
a+

√
4 bm∗ρm + 4 by∗ρy + a2

)
(Uuky + fγ µy − γ µy + uµy)

2Ub (Uuky + fγ µy − γ µy + uµy +B1Dy)

G(U, V ) =

(
a+

√
4 bm∗ρm + 4 by∗ρy + a2

)
(Vkm + µm)

2V b (B1Dm + Vkm + µm)
,

(2.40)

with x∗ and y∗ defined as in Eq. (2.35). Since we are looking for an endemic
equilibrium E∗ such that U 6= 0 and V 6= 0, Eq. (2.39) can be simplified as

F (U, V ) = 1 and G(U, V ) = 1. (2.41)

From Eqs. (2.40) and (2.41), the interior endemic equilibrium E∗ corresponds to
the intersection point (U, V ) of the two curves F (U, V ) = 1 and G(U, V ) = 1 with
U > 0 and V > 0. Equations in (2.41) is very difficult to solve analytically due to
the high nonlinearity of F and G. Nonetheless, we can numerically plot these two
curves and examine how the intersection point(s) change with model parameters.
We choose β = 16, u = 0.5 and f = 0.2 (so that Rf = 1.1307 > 1). All other
parameter values are as in Table 1.

Figure 4 illustrates the existence of an interior equilibrium E∗ when the basic
reproduction number is great than the unity. From this figure, the surfaces of
F (U, V ) and G(U, V ) are plotted and the curves F (U, V ) = 1 and G(U, V ) = 1
are shown as intersections of the surfaces with the plane of unity (see Figs. 4
(a) and (b)). Figure 4(c) illustrates that there is a unique point (U,V) at which
F (U, V ) = G(U, V ) = 1.
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Figure 4. In (a) and (b) we see that there is a curve in the (U, V ) which plane along with F (U, V ) = 1
and G(U, V ) = 1, respectively. (c) illustrates that there is a unique point at which F (U, V ) = G(U, V ) =
1. This point determines an endemic equilibrium E∗. (d) shows the contour curves F (U, V ) = 1 and
G(U, V ) = 1, and there is a unique intersection point. We choose β = 16, u = 0.5 and f = 0.2 (so that
Rf = 1.1307 > 1). All other parameter values are as in Table 1.

Proposition 2.1. : The unique endemic equilibrium E∗ of the model (2.1) guar-
anteed numerically is locally asymptotically stable for Rf > 1 but close to 1.

The proof of the Proposition 2.1 is given in Appendix.
Figure 5 shows the result of numerical simulations of model system (2.1) using

various initial conditions when β = 16 and f = 0.2 (so that Rf = 1.12024 > 1). All
other parameters values are given in Table 1. It clearly appears that the trajectories
of model system (2.1) converge to the unique endemic equilibrium point. This means
that the disease persists in an infected host which supports result of Proposition
2.1.

2.5. Sensitivity analysis

The asymptotic dynamics of model system (2.1) are completely determined by the
threshold quantity Rf , which determines the prevalence of the disease. Since model
system (2.1) is a deterministic model, the only uncertainty is generated by the
input variation and parameters. We present parameter-related global sensitivity
analysis of each malaria model (2.1) output variable to all parameters as a whole.
Parameter estimates can be uncertain because of many reasons including natural
variations, error in measurements, or a lack of measuring techniques. The sensitivity
analysis identifies critical model parameters and quantifies the impact of each input
parameter on the value of an output in the presence of the other input parameters.
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Figure 5. Time plot of densities of (a) RBCs x(t), (b) PRBCs y(t), (c) free merozoites m(t), (d) immune
effectors I(t) and (e) gametocytes g(t) using various initial conditions when β = 16 and f = 0.2 (so that
Rf = 1.12024 > 1). All other parameter values are given in Table 1.

This analysis has the advantage that the entire parameter is explored, but this
design is extremely time consuming and hence impractical for complex transmission
models that contain a multiple of parameters.

A sensitivity analysis carried out by estimating the partial rank correlation co-
efficients (PRCC) for each input parameter and each outcome variable, can identify
which parameters are important in contributing to the variability outcomes [24].
Then, we point out interesting insights that emerge from a comparison of the terms
that appear in Rf . Examination of Rf indicates that β, γ, ky, km, µy, µm, f , and u
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are potentially influential terms. The relative importance of the input variables can
be directly evaluated by comparing the values of the PRCC. The sign of the PRCC
indicates the qualitative relationship between each input variable and each output
variables. The magnitude of the PRCC indicates the importance of the uncertainty
in estimating the value of the outcome variable. Using Latin hypercube sampling,
500 samples from a uniform distribution of the parameter ranges of model were
taken. PRCCs were calculated following the procedures described in [17]. PRCC
falls between -1 and +1, with an absolute value of PRCC close to 1 indicating that
the parameter has a strong impact on the model output.

These PRCC were used to identify the key input variables that contributed to
the prediction imprecision; the PRCC results are presented in Fig. 6. Figures
6(a)-(e) show PRCC values for uninfected RBCs x(t), PRBCs y(t), free merozoites
m(t), immune effectors I(t) and gametocytes g(t). This analysis identifies several
mechanisms that regulate malaria infection outcome. The most significant (PRCC
values above 0.5 or below -0.5) sensitivity parameter are γ, ky, µy and f . The
sensitivity analysis shows that the drug efficiency f is negatively correlated with
PBRCs y(t), free merozoites m(t) and immune effectors I(t), while RBCs x(t) is
positively correlated with drug efficiency. This suggests that these parameters need
to be estimated with precision in order to accurate the dynamics of malaria infection.

3. The spatio-temporal model

In this section, we extend model system (2.1) taking into account the spatial com-
ponent in the modeling [26]. Following the invasion of a blood vessel, sporozoites
travel with the blood flow to the liver, where they are arrested and moved on the
endothelium, before passing through liver-resident macrophages and invade hepato-
cytes. Now, we consider that movement of RBCs, PRBCs, free merozoites, immune
effectors and gametocytes within the body of a host. We assume that all cells diffuse
randomly in an isotropy two-dimensional domains.

According to the above explanations, we derive the following spatiotemporal
model:

∂x

∂t
(t, w) = ηx

(
1− x+ y

K

)
− β xm

x+ y
+ εx∆x,

∂y

∂t
(t, w) = β

xm

x+ y
− ky

Iy

1 +Dyy
− µyy + εy∆y,

∂m

∂t
(t, w) = γ(1− f)µyy − µmm− km

Im

1 +Dmm
− βu xm

x+ y
+ εm∆m,

∂I

∂t
(t, w) = I

(
ρy

y

1 +Dyy
+ ρm

m

1 +Dmm

)
+ aI − bI2 + εI∆I,

∂g

∂t
(t, w) = δy − µgg + εg∆g,

(3.1)

where εx, εy, εm, εI and εg are respectively, the diffusion parameters of RBCs,
PRBCs, free merozoites, immune effectors and gametocytes, w = (u, v) ∈ R2

+ is the

space and ∆ =
∂2

∂u2
+

∂2

∂v2
the Laplacian operator.

To avoid a migration of populations, we consider the following Neumann bound-



Dynamics of an intra-host model of malaria 2059

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

V
a

lu
e

s
 o

f 
s
e

n
s
it
iv

it
y
 i
n

d
e

x
e

s
 (

P
R

C
C

)

Sensitivity of Uninfected RBCs

β γ k
y

k
m

µ
y

µ
m

u f

(a)

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

V
a

lu
e

s
 o

f 
s
e

n
s
it
iv

it
y
 i
n

d
e

x
e

s
 (

P
R

C
C

)

Sensitivity of Infected RBCs

β γ k
y

k
m

µ
y

µ
m

u f

(b)

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

V
a

lu
e

s
 o

f 
s
e

n
s
it
iv

it
y
 i
n

d
e

x
e

s
 (

P
R

C
C

)

Sensitivity of free merozoites

β γ k
y

k
m

µ
y

µ
m

u f

(c)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

V
a

lu
e

s
 o

f 
s
e

n
s
it
iv

it
y
 i
n

d
e

x
e

s
 (

P
R

C
C

)

Sensitivity of Innate response

β γ k
y

k
m

µ
y

µ
m

u f

(d)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sensitivity of gametocytes

V
a

lu
e

s
 o

f 
s
e

n
s
it
iv

it
y
 i
n

d
e

x
e

s
 (

P
R

C
C

)

β γ k
y

k
m

µ
y

µ
m

u f

(e)

Figure 6. Values of sensitivity indexes (PRCC) of uninfected RBCs, PRBCs, free merozoites, immune
effectors and gametocytes.

ary conditions:

∂x

∂ν
(t, w) =

∂y

∂ν
(t, w) =

∂m

∂ν
(t, w) =

∂I

∂ν
(t, w) =

∂g

∂ν
(t, w) = 0, (t, w) ∈ R+ × ∂Γ,

x(0, w) = x0(w), y(0, w) = y0(w), m(0, w) = m0(w), I(0, w) = I0(w)

and g(0, w) = g0(w), w ∈ Γ ⊂ R2,

(3.2)
where Γ is a bounded domain and the initial conditions x0, y0, m0, I0 and g0 are
non-negative and bounded functions defined in Γ. In the sequel, we will denote by
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Γ the closure of Γ.

3.1. Model basic properties

For model system (3.1), all solutions with non-negative initial functions are ulti-
mately bounded. Indeed, let (x(t, w), y(t, w),m(t, w), I(t, w), g(t, w)) be the solution
of model system (3.1) such that x(0, w) = x0(w), y(0, w) = y0(w), m(0, w) = m0(w),
I(0, w) = I0(w), and g(0, w) = g0(w) are non-negative and bounded functions de-
fined in Γ. Now, let

z(t, w) = x(t, w) + y(t, w), x0 = max
Γ

x0(w), x0 = min
Γ
x0(w), y0 = max

Γ
y0(w),

y
0

= min
Γ
y0(w), m0 = max

Γ
m0(w), m0 = min

Γ
m0(w), I0 = max

Γ
I0(w),

I0 = min
Γ
I0(w), g0 = max

Γ
g0(w) and g

0
= min

Γ
g0(w).

It is obvious that (0, 0, 0, 0, 0) is a lower solution of model system (3.1). Moreover,
we have

x0 ≥ 0, y0 ≥ 0, m0 ≥ 0, I0 ≥ 0, and g0 ≥ 0.

Thus, by the maximum principle, one can conclude that

x(t, w) ≥ 0, y(t, w) ≥ 0, m(t, w) ≥ 0, I(t, w) ≥ 0 and g(t, w) ≥ 0.

This implies that any solution of model system (3.1) with positive initial condition
will remain positive.

Now, we will prove that the solutions of model system (3.1) admit also upper
limits. Without loss of generality, we assume that εx = εy = εI . Then, from model
system (3.1), one has

∂T

∂t
= ηx

(
1− T

K

)
− µyy − ky

Iy

1 +Dyy
+ ε1T.

From the above equation, one can deduce that

∂T

∂t
≤ ηx

(
1− T

K

)
+ ε1T ≤ ηT (1− T

K
) + ε1T.

Consider the following equation:

∂T

∂t
= ηT

(
1− T̄

K

)
+ ε1T .

Solving the above equation gives

T (t) =
KT (0)

T (0) + (K − T (0))e−ηt

where T (0) = x0 + y0. Now, using the maximum principle, one has

T (t, w) ≤ T (t) =
KT (0)

T (0) + (K − T (0))e−ηt
. (3.3)
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Applying Birkhoff’s and Rota’s theorem on differential inequality , as t goes to the
infinity, one can deduce that T (t, w) ≤ K, ∀t ∈ R+ which implies that x(t, w) ≤ K
and y(t, w) ≤ K for all t ∈ R+.

Using the same reasoning, one can establish that

m(t, w) ≤ γ(1− f)µyK

µm
. (3.4)

We can use the same reasoning to prove that I(t, w) and g(t, w) are ultimately
bounded.

3.2. Numerical simulations

We now provide several simulations, resulting from the spatio-temporal models
(3.1). We assume that the diffusion paramaters of RBCs, PRBCs, malaria parasites,
immune effectors and gametocytes are the same that εx = εy = εm = εI = εg = 0.5.
The boundary conditions are of Neumann type, i.e. the flow at the edge is zero.
Initially, the densities or RBCs, PBRCs, free merozoites, immune effectors and
gametocytes are randomly distributed in space w = (u, v) ∈ R2

+ and outside the
space, their densities are zero.

We first consider the spatio-temporal model system (3.1) in the absence of any
antimalarial treatment, that is f = 0 (so that Rf = R0 = 1.5030 > 1) using the
parameter values given in Table 1. Using these parameter values, the movement
paths of x(t), y(t), m(t), I(t) and g(t) after 10 days are presented in Fig. 7. It
clearly appears that PRBcs, free merozoites and gametocytes increase and reach a
steady endemic state since Rf > 1. This figure also shows that the only effect of
the immune response is not sufficient to vanish the populations of PRBCs and free
merozoites when Rf > 1. Indeed, the populations of uninfected RBCs, PRBCs,
free merozoites, immune effectors and gametocytes reach a steady endemic state
since Rf > 1.

Figure 8 shows the spatial repartition of the spatio-temporal model system (3.1)
after 10 days with insufficient drug efficiency when f = 0.15 and fc = 0.7188 (so
that Rf = 1.4134 and f < fc). All other parameter values as in Table 1. It
illustrates that the population tends the endemic equilibrium point. This means
that the drug efficiency is completely ineffective when f < fc.

Figure 9 shows the behavior of the spatio-temporal model system (3.1) after
10 days with a sufficient drug efficiency when f = 0.8 and fc = 0.7188 (so that
R0 = 1.4134, Rf = 0.3006 and f > fc). All other parameter values as in Table
1. From this figure, the parasites are eliminated due to the effect of drugs. This
implies that the infection can be eradicated if the drug efficiency is greater than the
critical drug efficiency (i.e. f > fc).

4. Concluding remarks

In this paper, we have proposed and analyzed a deterministic model for the dynam-
ical transmission of malaria within the body of a host. We have first considered
a temporal compartmental approach and then include the spatial component that
leads to a system of coupled diffusion-reaction-like equations to model parasite dis-
persal. The temporal model considered takes into account the standard incidence,
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Figure 7. Spatio-temporal evolution of model system (3.1) after 10 days without any treatment, that
is f = 0 (so that Rf = R0 = 1.5030 and fc = 0.7188) All other parameter values as in Table 1.

the immune response and the treatment with antimalarial drugs. We used Michaelis-
Menten-Monod functions to describe how immune cells interact with PRBCs and
free merozoites. A qualitative analysis of the temporal model has been present-
ed. The epidemic threshold parameter Rf which determines the outcome of the
disease is computed and used to assess the dynamics of the disease within a host.
The malaria disease-free equilibrium is obtained and its stability is investigated de-
pending on the system parameters. More precisely, we shown that depending of
the values of the parameters, there exists a threshold parameter ζ close to 1 such
that the malaria free equilibrium is GAS if Rf < ζ < 1. However, we also shown
that if Rf > 1, the model has two endemic equilibria: one endemic equilibrium
without immune response which is stable under certain condition and one endemic
equilibrium point with immune response whose existence has been proved through
numerical simulation which is locally asymptotically stable when Rf close to 1. We
performed the sensitivity analysis of the threshold parameter ζ. We found that the
threshold parameter ζ increase with the death rates of PRBCs and free merozoites
and the increasing rate of immune effectors. Thus, if the increasing rate of immune
effectors is sufficiently large the malaria parasites can be cleared within the body
of an infected host. This result is expected. The sensitivity analysis of the mod-
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Figure 8. Spatio-temporal evolution of model system (3.1) after 10 days with insufficient drug efficiency
when f = 0.20 and fc = 0.7188 (so that Rf = 1.2024 and f < fc). All other parameter values as in
Table 1.

el has been investigated to assess the impact of changes in parameter values on
the values of output model variables. We found that the model variables are most
sensitive to merozoites mean rate produce by PRBCs γ, immune effectors reaction
against PRBCs ky, the death rate of PRBCs and the drug efficiency f . Numerical
simulations have been presented to support theoretical results.

We have extended the temporal model to a spatio-temporal model using Diffusion-
Reaction equations. We have numerically assessed the importance of the spatial
distribution of RBCs, PRBCs, merozoites, gametocytes and immune effectors with-
in a host. We found that there exists parasites can be cleared from an infection if
the efficiency of drug f is great than the critical drug efficiency fc, that is f > fc.
This implies that drugs with a critical efficiency of drug fc are required to treat the
infection within a host.



2064 E. Takoutsing, S. Bowong, D. Yemele, A. Temgoua

Uninfected RBCs

space, u

s
p
a
c
e
, 
v

 

 

0 50 100
0

20

40

60

80

100

119

119.05

119.1

119.15

119.2

119.25

119.3

(a)

Infected RBCs

space, u

s
p
a
c
e
, 
v

 

 

0 50 100
0

20

40

60

80

100

0.4

0.45

0.5

0.55

0.6

(b)

Free viruses

space, u

s
p
a
c
e
, 
v

 

 

0 50 100
0

20

40

60

80

100

0.008

0.009

0.01

0.011

0.012

(c)

Inate response

space, u

s
p
a
c
e
, 
v

 

 

0 50 100
0

20

40

60

80

100

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

(d)

Gametocytes

space, u

s
p
a
c
e
, 
v

 

 

0 50 100
0

20

40

60

80

100

0.11

0.12

0.13

0.14

0.15

(e)

Figure 9. Spatio-temporal evolution of model system (3.1) after 10 days with a sufficient drug efficiency
when f = 0.8 and fc = 0.7188 (so that R0 = 1.4134, Rf = 0.3006 and f > fc). All other parameter
values as in Table 1.

5. Appendix: Proof of Proposition 2.1

Herein, we prove that the unique endemic equilibrium with immune response E∗

is locally asymptotically stable whenever R0 > 1. To do this, we use the following
theorem of Castillo-Chavez and Song [6].

Theorem 5.1 (C. Castillo-Chavez, B. Song, 2004). Consider the following general
system of ordinary differential equations with a parameter φ:

dz

dt
= f(z, φ), f : Rn × R→ R and f ∈ C2(Rn,R), (5.1)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and
assume

1. A = Dzf(0, 0) =

(
∂fi
∂zj

(0, 0)

)
is the linearization matrix of system (5.1)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of
A and other eigenvalues of A have negative real parts;

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding
to the zero eigenvalue).
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Let fk be the kth component of f and

a1 =
n∑

k,i,j=1

vkuiuj
∂2fk
∂zi∂zj

(0, 0),

b1 =
n∑

k,i=1

vkui
∂2fk
∂zi∂φ

(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is totally
determined by the signs of a and b.

1. a1 > 0, b1 > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable
and there exists a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable
and there exists a negative, locally asymptotically stable equilibrium;

2. a1 < 0, b1 < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0
is locally asymptotically stable equilibrium, and there exists a positive unstable
equilibrium;

3. a1 > 0, b1 < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ� 1, 0 is stable,
and a positive unstable equilibrium appears;

4. a1 < 0, b1 > 0. When φ changes from negative to positive, 0 changes its sta-
bility from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a1 > 0 and b1 > 0, then a backward bifurcation occurs at φ = 0.

In order to apply Castillo-chavez and Song theorem [6], the following simplifica-
tion and change of variables are first of all made.

Let x1 = x, x2 = y, x3 = m, x4 = I and x5 = g. Further, by using the vector
notation x = (x1, x2, x3, x4, x5)T , model system (2.1) can be written in the form
x′ = F (x), with F = (F1, F2, F3, F4)T and T = x1 + x2, as follows:

ẋ1 = F1 = ηx1

(
1− T

K

)
− β x1x3

T
,

ẋ2 = F2 = β
x1x3

T
− µyx2 − ky

x2x4

1 +Dyx2
,

ẋ3 = F3 = γ(1− f)µyx2 − µmx3 − km
x3x4

1 +Dyx3
− βux1x3

T
,

ẋ4 = F4 = x4

(
ρy

x2

1 +Dyx2
+ ρm

x3

1 +Dmx3

)
+ ax4 − bx2

4,

x′5 = F5 = δx2 − µgx5.

(5.2)

System (5.2) has a DFE given by E0 = (x0
1, 0, 0, x

0
4, 0) where x0

1 = K and x0
4 = a

b .
Consider now the case when Rf = 1. Suppose, further, that γ = γ∗ is chosen as a
bifurcation parameter, with γ standing for Φ in the Theorem 4.1 of Castillo-Chavez
and Song [6]. Solving for γ from Rf = 1 gives

γ = γ∗ =
(kyx

0
4 + µy)(µm + kmx

0
4 + βu)

β(1− f)µy
. (5.3)
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The Jacobian matrix of the temporal model system (5.2 around the disease
free-equilibrium when γ = γ∗ is

J(E0) =



−η −η −β 0 0

0 −kyab − µy β 0 0

0 γ∗(1− f)µy −µm − kma
b − βu 0 0

0 ρy
a
b ρm

a
b −a 0

0 δ 0 0 −µg


. (5.4)

It can be easily seen that the Jacobian J(E0) of system (5.2) at the DFE E0, with
γ = γ∗, named Jγ∗ has zero as a simple eigenvalue (with all other eigenvalues having
negative real parts). Hence, the Center Manifold theory can be used to analyze the
dynamics of system (5.2). In particular, the theorem in Castillo-Chavez and Song [6]
will be used to show that when R0 > 1, the unique endemic equilibrium of system
2.1 (as show numerically in Fig. 4) is locally asymptotically stable for R0 near 1
under certain condition.

In order to apply Castillo-Chavez and Song theorem [6], we need to compute:

• Eigenvectors of Jγ∗

For the case when Rf = 1, it can be shown that the Jacobian of system
(5.2) has a right eigenvector (corresponding to the zero eigenvalue), given by
w = (w1, w2, w3, w4, w5)T , where,

w1 = −η + kyx
0
4 + µy
η

w2,

w2 = w2 > 0,

w3 =
kyx

0
4 + µy
β

w2,

w4 =
x0

4

a

(
ρy +

ρm(kyx
0
4 + µy)

β

)
w2,

w5 =
δ

µg
w2.

(5.5)

Similarly, the components of the left eigenvector (corresponding to the zero
eigenvalue) denoted by v = (v1, v2, v3, v4, v5)T are given by

v1 = 0,

v2 = v2 > 0,

v3 =
kyx

0
4 + µy

γµy(1− f)
v2,

v4 = 0,

v5 = 0.

• Computation of b1
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It can be shown that the associated non-vanishing second partial derivatives
of F at E0 are:

∂2F3

∂x2∂γ
(E0) = γ(1− f)µy.

Then, once can deduce that

b1 =

5∑
i,k=1

vkwi
∂2Fk
∂xi∂γ

(E0),

= v3w2
∂2Fk
∂x2∂γ

(E0),

= ky
a

b
+ µy > 0.

• Computation of a1

For model system (5.2), the associated non-vanishing second partial deriva-
tives of F at E0 are

∂2F2

∂2x2
2

(E0) = 2kyDyx
0
4,

∂2F2

∂x2∂x3
(E0) =

−β
K
,

∂2F2

∂x2∂x4
(E0) = −ky,

∂2F3

∂x2∂x3
(E0) =

βu

K
,
∂2F2

∂2x2
3

(E0) = 2kmDmx
0
4,

∂2F3

∂x3∂x4
(E0) = −km.

Therefore,

a1 =

5∑
i,j,k=1

vkwiwj
∂2Fk
∂xi∂xj

(E0),

= v2

[
w2

2

∂2F2

∂2x2
2

(E0) + 2w2w2
∂2F2

∂x2∂x3
(E0) + 2w2w4

∂2F2

∂x2∂x4

]
+v3

[
w2

3

∂2F2

∂2x2
3

(E0) + 2w2w3
∂2F2

∂x2∂x3
(E0) + 2w3w4

∂2F2

∂x3∂x4
(E0)

]
,

= −2v2w
2
2

[
(µy + kyx

0
4)(µm + kmx

0
4)

K(µm + kmx0
4 + βu)

+
kyx

0
4

a
(ρy −Dya)

]
−2v2w

2
2

[
kmx

0
4(µm − aDm)(µy + kyx

4
0)3

γµy(1− f)β2a
+
kmρyx

0
4(µy + kyx

0
4)2

aγµy(1− f)β

+
kyρyx

0
4(µy + kyx

0
4)

aβ

]
< 0.

Thus, since a1 < 0, the endemic equilibrium E∗ is locally asymptotically stable
with the basic reproduction number near to 1. This concludes the proof. 2
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