For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 1, 2018, Pages 19-31                                                                DOI:10.11948/2018.19
Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space
Sun Young Cho
Keywords:Quasi-$\phi$-nonexpansive mapping, equilibrium problem, generalized projection, variational inequality.
Abstract:
      In this paper, a hybrid algorithm is investigated for an asymptotically quasi-$\phi$-nonexpansive mapping in the intermediate sense and a bifunction. Strong convergence of the algorithm is obtained in a strictly convex, smooth and reflexive Banach space.
PDF      Download reader