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1. Introduction-Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let SE be the
unit sphere of E. Recall that E is said to be a strictly convex space iff ‖x+ y‖ < 2
for all x, y ∈ SE and x 6= y. Recall that E is said to have a Gâteaux differentiable

norm iff limt→0
‖x‖−‖x+ty‖

t exists for each x, y ∈ SE . In this case, we also say that
E is smooth. E is said to have a uniformly Gâteaux differentiable norm if for each
y ∈ BE , the limit is attained uniformly for all x ∈ SE . E is also said to have a
uniformly Fréchet differentiable norm iff the above limit is attained uniformly for
x, y ∈ SE . In this case, we say that E is uniformly smooth.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx = {y ∈ E∗ : ‖x‖2 = 〈x, y〉 = ‖y‖2}.

It is known

if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every
bounded subset of E;

if E is a strictly convex Banach space, then J is strictly monotone;

if E is a smooth Banach space, then J is single-valued and demicontinuous,
i.e.,continuous from the strong topology of E to the weak star topology of E;

if E is a reflexive and strictly convex Banach space with a strictly convex dual
E∗ and J∗ : E∗ → E is the normalized duality mapping in E∗, then J−1 = J∗;

if E is a smooth, strictly convex and reflexive Banach space, then J is single-
valued, one-to-one and onto;

if E is a uniformly smooth, then it is reflexive and smooth.
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It is also known that E∗ is uniformly convex if and only if E is uniformly
smooth. From now on, we use ⇀ and → to stand for the weak convergence and
strong convergence, respectively.

Recall that E has the Kadec-Klee Property (hereafter KKP) if limn→∞ ‖xn −
x‖ = 0 as n → ∞, for any sequence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and
‖xn‖ → ‖x‖ as n→∞. We remark here that if E is uniformly convex, then it has
the KKP; see [12] and the references therein.

Let C be a nonempty closed and convex subset of E and let B : C ×C → R be
a bifunction. Recall that the following equilibrium problem. Find x̄ ∈ C such that
B(x̄ y) ≥ 0, ∀y ∈ C. We use Sol(B) to denote the solution set of the equilibrium
problem. That is, Sol(B) = {x ∈ C : B(x, y) ≥ 0,∀y ∈ C}.

The following restrictions on bifunction B are essential in this paper.

(R-1) B(a, a) ≡ 0,∀a ∈ C;

(R-2) B(b, a) +B(a, b) ≤ 0,∀a, b ∈ C;

(R-3) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(R-4) b 7→ B(a, b) is convex and weakly lower semi-continuous, ∀a ∈ C.

We remark here that B is said to be monotone iff B(x, y) + B(y, x) ≤ 0 for all
x, y ∈ C. y 7→ B(x, y) is convex iff

B(tx+ (1− t)y, z) ≤ tB(x, z) + (1− t)B(y, z)

for all x, y, z ∈ C and t ∈ (0, 1). y 7→ B(x, y) is lower semi-continuous iff B(x, yn)→
B(x, y) whenever yn → y as n → ∞. It is known that the indicator function of an
open set is lower semi-continuous.

The equilibrium problem provides us a natural, novel and unified framework
to study a wide class of problems arising in physics, economics, finance, trans-
portation, network, elasticity and optimization. The ideas and techniques of this
theory are being used in a variety of diverse areas and proved to be productive
and innovative. It has been shown that variational inequalities, complementarity
problems, fixed point problems and inclusion problems can be viewed as a special
realization of the equilibrium problems; see, [3,4,9,11,19,20,23] and the references
therein. Equilibrium problems have numerous applications, including but not limit-
ed to problems in economics, game theory, finance, traffic analysis, circuit network
analysis and mechanics. Recently, the equilibrium problem has been extensively
investigated based on hybrid algorithms, in particular, the monotone hybrid algo-
rithm; see [5, 10,13,15,21,22] and the references therein.

Let T be a mapping on C. Recall that a point p is said to be a fixed point of
T if and only if p = Tp. p is said to be an asymptotic fixed point of T if and only
if C contains a sequence {xn}, where xn ⇀ p such that xn − Txn → 0. From now

on, We use Fix(T ) to stand for the fixed point set and F̃ ix(T ) to stand for the
asymptotic fixed point set.

T is said to be closed iff for any sequence {xn} ⊂ C such that limn→∞ xn = x′

and limn→∞ Txn = y′, then Tx′ = y′. Let B be a bounded subset of C. Recall that
T is said to be uniformly asymptotically regular on C if and only if

lim sup
n→∞

sup
x∈B
{‖Tn+1x− Tnx‖} = 0.
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Next, we assume that E is a smooth Banach space which means J is single-
valued. Study the functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there
exists an unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x−y‖,
for all y ∈ C. The operator PC is called the metric projection from H onto C. It is
known that PC is firmly nonexpansive. In [2], Alber studied a new mapping ProjC
in a Banach space E which is an analogue of PC , the metric projection, in Hilbert
spaces. Recall that the generalized projection ProjC : E → C is a mapping that
assigns to an arbitrary point x ∈ E the minimum point of φ(x, y), which implies
from the definition of φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E (1.1)

and

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀x, y, z ∈ E. (1.2)

Recall that T is said to be relatively nonexpansive iff

F̃ ix(T ) = Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ).

T is said to be relatively asymptotically nonexpansive iff

F̃ ix(T ) = Fix(T ) 6= ∅, φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ), ∀n ≥ 1,

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.
T is said to be relatively asymptotically nonexpansive in the intermediate sense

iff F̃ ix(T ) = Fix(T ) 6= ∅ and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx) − φ(p, x)

)
}, we see ξn → 0 as

n→∞.
T is said to be quasi-φ-nonexpansive iff

Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ).

T is said to be asymptotically quasi-φ-nonexpansive iff there exists a sequence
{µn} ⊂ [0,∞) with µn → 0 as n→∞ such that

Fix(T ) 6= ∅, φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ), ∀n ≥ 1.

T is said to be asymptotically quasi-φ-nonexpansive in the intermediate sense
iff Fix(T ) 6= ∅ and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx) − φ(p, x)

)
}, we see ξn → 0 as

n→∞.
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Remark 1.1. The class of relatively asymptotically nonexpansive mappings, which
was considered in [1], covers the class of relatively nonexpansive mappings [8]. The
class of (asymptotically) quasi-φ-nonexpansive mappings [16, 17] covers the class
of relatively (asymptotically) nonexpansive mappings. (Asymptotically) quasi-φ-

nonexpansive mappings does not require the strong restriction F̃ ix(T ) = Fix(T ).
The class of asymptotically quasi-φ-nonexpansive mappings in the intermediate
sense is more desirable than the class of relatively asymptotically nonexpansive map-
pings in the intermediate sense. The class of asymptotically quasi-φ-nonexpansive
mappings in the intermediate sense does not require the strong restriction F̃ ix(T ) =
Fix(T ); see [17] and the references therein.

Remark 1.2. The class of asymptotically quasi-φ-nonexpansive mappings in the
intermediate sense [14] is reduced to the class of asymptotically quasi-nonexpansive
mappings in the intermediate sense, which was considered in [7] as a non-Lipschitz
continuous mappings, in the framework of Hilbert spaces.

The following lemmas also play an important role in this paper.

Lemma 1.1 ( [2]). Let E be a strictly convex, reflexive, and smooth Banach space
and let C be a closed and convex subset of E. Let x ∈ E. Then

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x), ∀y ∈ C,

and x0 = ΠCx if and only if

〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C.

Lemma 1.2 ( [6, 16]). Let E be a strictly convex, smooth, and reflexive Banach
space and let C be a closed convex subset of E. Let B be a function with restrictions
(R-1), (R-2), (R-3) and (R-4). Let x ∈ E and let r > 0. Then there exists z ∈ C
such that rB(z, y) + 〈z − y, Jz − Jx〉 ≤ 0, ∀y ∈ C Define a mapping WB,r by

WB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

The following conclusions hold:

(1) WB,r is single-valued quasi-φ-nonexpansive.

(2) Sol(B) = Fix(WB,r) is closed and convex.

Lemma 1.3. Let E be a strictly convex, smooth and reflexive Banach space such
that both E∗ and E have the KKP. Let C be a convex and closed subset of E and
let T be an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense
on C. Then Fix(T ) is convex.

Proof. Let p1, p2 ∈ Fix(T ), and

p = tp1 + (1− t)p2,

where t ∈ (0, 1). We see that p = Tp. Indeed, we see from the definition of T that

φ(p1, T
np) ≤ φ(p1, p) + ξn,

and
φ(p2, T

np) ≤ φ(p2, p) + ξn.
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In view of (1.2), we obtain that

φ(p1, T
np) = φ(p1, p) + φ(p, Tnp) + 2〈p1 − p, Jp− JTnp〉, (1.3)

and

φ(p2, T
np) = φ(p2, p) + φ(p, Tnp) + 2〈p2 − p, Jp− JTnp〉. (1.4)

It follows from (1.3) and (1.4) that

φ(p, Tnp) ≤ 2〈p− p1, Jp− J(Tnp)〉+ ξn, (1.5)

and

φ(p, Tnp) ≤ 2〈p− p2, Jp− J(Tnp)〉+ ξn. (1.6)

Multiplying t and (1−t) on the both sides of (1.5) and (1.6), respectively yields that
φ(p, Tnp) ≤ ξn. Using (1.1), one has limn→∞ ‖Tnp‖ = ‖p‖. Since E∗ is reflexive,
we may, without loss of generality, assume that J(Tnp) ⇀ v∗ ∈ E∗. In view of the
reflexivity of E, we have J(E) = E∗. This shows that there exists an element v ∈ E
such that Jv = v∗. It follows that

φ(p, Tnp) = ‖p‖2 − 2〈p, J(Tnp)〉+ ‖J(Tnp)‖2.

Taking lim infn→∞ on the both sides of the equality above, we obtain that

0 ≥ ‖p‖2 − 2〈p, v∗〉+ ‖v∗‖2

= ‖p‖2 − 2〈p, Jv〉+ ‖Jv‖2

= ‖p‖2 − 2〈p, Jv〉+ ‖v‖2

= φ(p, v).

This implies that p = v, that is, Jp = v∗. It follows that J(Tnp) ⇀ Jp ∈ E∗. Using
KKP of E∗, we obtain limn→∞ ‖J(Tnp) − Jp‖ = 0. Since J−1 is demicontinuous,
we see that Tnp ⇀ p. By virtue of KKP of E, we see Tnp→ p as n→∞. Hence

TTnp = Tn+1p→ p,

as n→∞. In view of the closedness of T , we obtain that p ∈ Fix(T ). This shows
that Fix(T ) is convex. This completes the proof.

2. Main results

Theorem 2.1. Let E be a strictly convex, smooth and reflexive Banach space such
that both E∗ and E have the KKP. Let C be a convex and closed subset of E and let
B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let T be an asymptotically
quasi-φ-nonexpansive mapping in the intermediate sense on C. Assume that T is
uniformly asymptotically regular and closed and Fix(T )∩Sol(B) is nonempty. Let
{xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1
x0,

Jyn = αnJT
nxn + (1− αn)Jxn,

Cn+1 = {z ∈ Cn : φ(z, xn) + αnξn ≥ φ(z, un)},
xn+1 = ProjCn+1

x1,
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where
ξn = max{ sup

p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
, 0},

un ∈ C such that

rnB(un, µ) ≤ 〈µ− un, Jun − Jyn〉, ∀µ ∈ Cn,

{αn} is a real sequence in [a, 1], where a ∈ (0, 1] is a real number, and {rn} ⊂ [r,∞)
is a real sequence, where r is some positive real number. Then {xn} converges
strongly to ProjFix(T )∩Sol(B)x1.

Proof. First, we prove Sol(B) ∩ Fix(T ) is convex and closed. Using Lemma 1.2
and Lemma 1.3, we find that Sol(B) is convex and closed and Fix(T ) is convex.
Since T is closed, one has Fix(T ) is also closed. So, ProjSol(B)∩Fix(T )x is well
defined, for any element x in E.

Next, we prove that Cn is convex and closed. It is obvious that C1 = C is
convex and closed. Assume that Cm is convex and closed for some m ≥ 1. Let
p1, p2 ∈ Cm+1. It follows that

p = sp1 + (1− s)p2 ∈ Cm,

where s ∈ (0, 1). Notice that

φ(p1, um)− φ(p1, xm) ≤ αmξm,

and
φ(p2, u(m,i))− φ(p2, xm) ≤ αmξm,

Hence, one has

2〈p1, Jxm − Jum〉 − ‖xm‖2 + ‖um‖2 ≤ αmξm,

and
2〈p2, Jxm − Jum〉 − ‖xm‖2 + ‖um‖2 ≤ αmξm.

Using the above two inequalities, one has

φ(p, xm) + αmξm ≥ φ(z, um).

This shows that Cm+1 is closed and convex. Hence, Cn is a convex and closed set.
This proves that ProjCn+1

x1 is well defined.
Next, we prove Sol(B) ∩ Fix(T ) ⊂ Cn. Note that Sol(B) ∩ Fix(T ) ⊂ C1 = C

is clear. Suppose that Sol(B)∩Fix(T ) ⊂ Cm for some positive integer m. For any
w ∈ Sol(B) ∩ Fix(T ) ⊂ Cm, we see that

αmξm + φ(w, xm) ≥ αmφ(w, Tmxm) + (1− αm)φ(w, xm)

= ‖w‖2 − 2αm〈w, JTmxm〉 − 2(1− αm)〈w, Jxm〉
+ αm‖Tmxm‖2 + (1− αm)‖xm‖2

≥ ‖(1− αm)Jxm + αmJT
mxm‖2 + ‖w‖2

− 2〈w, (1− αm)Jxm + αmJT
mxm〉

= φ(w, ym)

≥ φ(w, um) ≥ 0,
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where
ξm = max{ sup

p∈Fix(T ),x∈C

(
φ(p, Tmx)− φ(p, x)

)
, 0}.

This shows that w ∈ Cm+1. This implies that Sol(B)∩Fix(T ) ⊂ Cn. Using Lemma
1.1, one has

〈z − xn, Jx1 − Jxn〉 ≤ 0, ∀z ∈ Cn.

It follows that

〈w − xn, Jx1 − Jxn〉 ≤ 0, ∀w ∈ Sol(B) ∩ Fix(T ) ⊂ Cn.

Using Lemma 1.1 yields that

φ(xn, x1) ≤ φ(ΠFix(T )∩Sol(B)x1, x1),

which implies that {φ(xn, x1)} and {xn} are bounded. Since E is reflexive, we may
assume that xn ⇀ x̄ ∈ Cn. Therefore, one has

φ(xn, x1) ≤ φ(x̄, x1).

This implies that

φ(x̄, x1) ≤ lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉)

= lim inf
n→∞

φ(xn, x1) ≤ φ(x̄, x1).

It follows that
lim
n→∞

φ(xn, x1) = φ(x̄, x1).

Hence, we have
lim

n→∞
‖xn‖ = ‖x̄‖.

Using the KKP of the spaces, one obtains that xn converges strongly to x̄ as n→∞.
On the other hand, we find that

φ(xn+1, x1) ≥ φ(xn, x1),

which shows that {φ(xn, x1)} is nondecreasing. Therefore, one has limn→∞ φ(xn, x1)
exists. It follows that

φ(xn+1, x1)− φ(xn, x1) ≥ φ(xn+1, xn) ≥ 0.

Therefore, we have
lim
n→∞

φ(xn+1, xn) = 0.

Since xn+1 ∈ Cn+1, one sees that

φ(xn+1, xn) + αnξn ≥ φ(xn+1, un) ≥ 0.

It follows that
lim

n→∞
φ(xn+1, un) = 0.

Hence, one has
lim

n→∞
(‖un‖ − ‖xn+1‖) = 0.
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This implies that

lim
n→∞

‖Jun‖ = lim
n→∞

‖un‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Jun} is bounded. Assume that Jun converges weakly to u∗ ∈ E∗.
In view of the reflexivity of E, we see that J(E) = E∗. This shows that there exists
an element u ∈ E such that Ju = u∗. It follows that

φ(xn+1, un) + 2〈xn+1, Jun〉 = ‖xn+1‖2 + ‖Jun‖2.

Taking lim infn→∞, one has

0 ≥ ‖x̄‖2 − 2〈x̄, u∗〉+ ‖u∗‖2

= ‖x̄‖2 + ‖Ju‖2 − 2〈x̄, Ju〉
= φ(x̄, u) ≥ 0.

That is, x̄ = u, which in turn implies that Jx̄ = u∗. Hence, Jun ⇀ Jx̄ ∈ E∗. Using
the KKP, we obtain limn→∞ Jun = Jx̄. Since J−1 is demi-continuous and E has
the KKP, one gets un → x̄, as n→∞. On the other hand, one has

0 ≤ φ(xn+1, yn) ≤ αnξn + φ(xn+1, xn).

Hence, one has

lim
n→∞

φ(xn+1, yn) = 0.

Hence, one has

lim
n→∞

(‖yn‖ − ‖xn+1‖) = 0.

This implies that

lim
n→∞

‖Jyn‖ = lim
n→∞

‖yn‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Jyn} is bounded. Assume that Jyn converges weakly to y∗ ∈ E∗.
In view of the reflexivity of E, we see that J(E) = E∗. This shows that there exists
an element y ∈ E such that Jy = y∗. It follows that

φ(xn+1, yn) + 2〈xn+1, Jyn〉 = ‖xn+1‖2 + ‖Jyn‖2.

Taking lim infn→∞, one has

0 ≥ ‖x̄‖2 − 2〈x̄, y∗〉+ ‖y∗‖2

= ‖x̄‖2 + ‖Jy‖2 − 2〈x̄, Jy〉
= φ(x̄, y) ≥ 0.

That is, x̄ = y, which in turn implies that y∗ = Jx̄. Hence,

Jyn ⇀ Jx̄ ∈ E∗.

Using the KKP, we obtain

lim
n→∞

Jyn = Jx̄.
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Since J−1 is demi-continuous and E has the KKP, one gets

yn → x̄ ∈ Cn, as n→∞.

Next, we show that x̄ ∈ Fix(T ) ∩ Sol(B). Note the fact

Jyn − Jxn = αn(JTnxn − Jxn),

and the restriction on {αn}, one has

lim
n→∞

‖Jxn − JTnxn‖ = 0.

This implies that
lim
n→∞

‖JTnxn − Jx̄‖ = 0.

Since J−1 is demicontinuous, one has Tnxn ⇀ x̄. Since

|‖Tnxn‖ − ‖x̄‖| ≤ ‖J(Tnxn)− Jx̄‖,

one has ‖Tnxn‖ → ‖x̄‖, as n→∞. Since E has the KKP, we obtain

lim
n→∞

‖x̄− Tnxn‖ = 0.

Since T is also uniformly asymptotically regular, one has

lim
n→∞

‖x̄− Tn+1xn‖ = 0.

That is, T (Tnxn) → x̄. Using the closedness of T , we find T x̄ = x̄. This proves
x̄ ∈ Fix(T ).

Next, we show that x̄ ∈ Sol(B). Since

〈y − un, Jun − Jyn〉 ≥ rnB(y, un), ∀y ∈ Cn,

we see that
‖y − un‖‖Jun − Jyn‖ ≥ rnB(y, un).

In view of (R-4), one has
B(y, x̄) ≤ 0.

For 0 < s < 1, define
ys = sy + (1− s)x̄.

It follows that ys ∈ C, which yields that B(ys, x̄) ≤ 0. It follows from the (R-1)
and (R-4) that

0 = B(ys, ys) ≤ sB(ys, y) + (1− s)B(ys, x̄) ≤ sB(ys, y).

That is, B(ys, y) ≥ 0. Letting s ↓ 0, we obtain from (R-3) that B(x̄, y) ≥ 0, ∀y ∈ C.
This implies that x̄ ∈ Sol(B). This completes the proof that x̄ ∈ Sol(B) ∩ Fix(T ).

Finally, we prove x̄ = ProjSol(B)∩Fix(T )x1. Note the fact

〈w − xn, Jx1 − Jxn〉 ≤ 0, ∀w ∈ Sol(B) ∩ Fix(T ).

It follows that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0, ∀w ∈ Fix(T ) ∩ Sol(B).

Using Lemma 1.1, we find that x̄ = ProjFix(T )∩Sol(B)x1. This completes the proof.
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Remark 2.1. Theorem 2.1, which mainly improves the corresponding results in
[14, 17, 19, 21, 24] unify the recent results on hybrid algorithms. The algorithm is
more efficient since un is searched monotonicially in Cn instead of always in C. The
framework of the space is only smooth. To be more clear, we remove the uniform
smoothness. The typical example of the space in Theorem 2.1 is a reflexive, strictly
convex and smooth Musielak-Orlicz space.

Corollary 2.1. Let E be a strictly convex, smooth and reflexive Banach space such
that both E∗ and E have the KKP. Let C be a convex and closed subset of E and let
B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let T be an asymptotically
quasi-φ-nonexpansive mapping in the intermediate sense on C. Assume that T is
uniformly asymptotically regular and closed and Fix(T )∩Sol(B) is nonempty. Let
{xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1
x0,

Cn+1 = {z ∈ Cn : φ(z, xn) + αnξn ≥ φ(z, un)},
xn+1 = ProjCn+1

x1,

where

ξn = max{ sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
, 0},

un ∈ Cn such that rnB(un, µ) ≤ 〈µ−un, Jun−JTnxn〉, ∀µ ∈ Cn, and {rn} ⊂ [r,∞)
is a real sequence, where r is some positive real number. Then {xn} converges
strongly to ProjFix(T )∩Sol(B)x1.

If T is the identity operator, we have the following result.

Corollary 2.2. Let E be a strictly convex, smooth and reflexive Banach space such
that both E∗ and E have the KKP. Let C be a convex and closed subset of E and
let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Assume that Sol(B) is
nonempty. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1
x0,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, un)},
xn+1 = ProjCn+1

x1,

where un ∈ Cn such that rnB(un, µ) ≤ 〈µ− un, Jun − Jxn〉, ∀µ ∈ Cn, and {rn} ⊂
[r,∞) is a real sequence, where r is some positive real number. Then {xn} converges
strongly to ProjSol(B)x1.

3. Applications

In this section, we consider solutions of a variational inequality and give some
deduced results in the framework Hilbert spaces.

Let A : C → E∗ be a single valued monotone operator which is continuous along
each line segment in C with respect to the weak∗ topology of E∗ (hemicontinuous).
Recall the the following variational inequality. Finding a point x ∈ C such that
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〈x − y,Ax〉 ≤ 0, ∀y ∈ C. The symbol Nc(x) stand for the normal cone for C at a
point x ∈ C; that is,

Nc(x) = {x∗ ∈ E∗ : 〈x− y, x∗〉 ≥ 0, ∀y ∈ C}.

From now on, we use V I(C,A) to denote the solution set of the variational inequal-
ity.

Theorem 3.1. Let E be a strictly convex, smooth and reflexive Banach space such
that both E∗ and E have the KKP. Let C be a convex and closed subset of E. Let
A : C → E∗ be a single valued, monotone and hemicontinuous operator and let B
be a function with (R-1), (R-2), (R-3) and (R-4). Assume that Sol(B) ∩ V I(C,A)
is not empty. Let {xn} be a sequence generated in the following process

x0 ∈ E chosen arbitrarily,

C1 = C,∀i ∈ Λ,

x1 = ProjC1x0,

zn = V I(C,A+ 1
r (J − Jxn)),

Jyn = αnJzn + (1− αn)Jxn, n ≥ 1,

Cn+1 = {w ∈ Cn : φ(w, xn) ≥ φ(w, un},
xn+1 = ProjCn+1

x0, ∀n ≥ 1,

where ξn = max{supp∈Fix(T ),x∈C
(
φ(p, Tnx) − φ(p, x)

)
, 0}, un ∈ Cn such that

rnB(un, µ) ≤ 〈µ−un, Jun−Jyn〉, ∀µ ∈ Cn, {αn} is a real sequence in [a, 1], where
a ∈ (0, 1] is a real number, and {rn} ⊂ [r,∞) is a real sequence, where r is some
positive real number. Then {xn} converges strongly to ProjV I(C,A)∩Sol(B)x1.

Proof. Define a new operator M by

Mx =

{
Ax+Nc(x), x ∈ C,
∅, x /∈ C.

Hence, M is maximal monotone and M−1(0) = V I(C,A) [18], where M−1(0) stands
for the zero point set of M . For each r > 0, and x ∈ E, we see that there exists
an unique xr in the domain of M such that Jx ∈ Jxr + rM(xr), where xr =
(J + rM)−1Jx. Notice that

zn = V I(C,
1

r
(J − Jxn) +A),

which is equivalent to

〈zn − y,Azn +
1

r
(Jzn − Jxn)〉 ≤ 0, ∀y ∈ C,

that is,
1

r

(
Jxn − Jzn

)
∈ Nc(zn) +Azn.

This implies that zn = (J + rM)−1Jxn. From [16], we find that (J + rM)−1J is
closed quasi-φ-nonexpansive with Fix((J + rM)−1J) = M−1(0). Using Theorem
2.1, we find the desired conclusion immediately.

In the framework of Hilbert spaces, one has√
φ(x, y) = ‖x− y‖, ∀x, y ∈ E.

The generalized projection is reduced to the metric projection and the class of
asymptotically-φ-nonexpansive mappings in the intermediate sense is reduced to
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the class of asymptotically quasi-nonexpansive mappings in the intermediate sense.
Using Theorem 3.1, we find the following results.

Theorem 3.2. Let E be a Hilbert space. Let C be a convex and closed subset of E
and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let T be an asymp-
totically quasi-nonexpansive mapping in the intermediate sense on C. Assume that
T is uniformly asymptotically regular and closed and Fix(T )∩Sol(B) is nonempty.
Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = PC1x0,

yn = αnT
nxn + (1− αn)xn,

Cn+1 = {z ∈ Cn : ‖z − xn‖2 + αnξn ≥ ‖z − un‖2},
xn+1 = PCn+1

x1,

where ξn = max{supp∈Fix(T ),x∈C
(
‖p − Tnx‖2 − ‖p − x‖2

)
, 0}, un ∈ Cn such that

rnB(un, µ) ≤ 〈µ − un, un − yn〉, ∀µ ∈ Cn, {αn} is a real sequence in [a, 1], where
a ∈ (0, 1] is a real number, and {rn} ⊂ [r,∞) is a real sequence, where r is some
positive real number. Then {xn} converges strongly to PFix(T )∩Sol(B)x1.
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