For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 1, 2018, Pages 10-18                                                                DOI:10.11948/2018.10
A kind of bifurcation of limit cycle from a nilpotent critical point
Tao Liu,Yirong Liu,Feng Li
Keywords:Nilpotent critical point, limit cycle, bifurcation.
Abstract:
      In this paper, an interesting and new bifurcation phenomenon that limit cycles could be bifurcated from nilpotent node (focus) by changing its stability is investigated. It is different from lowing its multiplicity in order to get limit cycles. We prove that $n^2+n-1$ limit cycles could be bifurcated by this way for $2n+1$ degree systems. Moreover, this upper bound could be reached. At last, we give two examples to show that $N(3)=1$ and $N(5)=5$ respectively. Here, $N(n)$ denotes the number of small-amplitude limit cycles around a nilpotent node (focus) with $n$ being the degree of polynomials in the vector field.
PDF      Download reader