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A KIND OF BIFURCATION OF LIMIT CYCLES
FROM A NILPOTENT CRITICAL POINT∗

Tao Liu1,2, Yirong Liu1 and Feng Li3,†

Abstract In this paper, an interesting and new bifurcation phenomenon that
limit cycles could be bifurcated from nilpotent node (focus) by changing its
stability is investigated. It is different from lowing its multiplicity in order to
get limit cycles. We prove that n2 + n − 1 limit cycles could be bifurcated
by this way for 2n + 1 degree systems. Moreover, this upper bound could be
reached. At last, we give two examples to show that N(3) = 1 and N(5) = 5
respectively. Here, N(n) denotes the number of small-amplitude limit cycles
around a nilpotent node (focus) with n being the degree of polynomials in the
vector field.
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1. Introduction

One of the most intriguing aspects of the dynamics of real planar polynomial vector
fields is the close relationship between the center conditions and bifurcation of
limit cycles. Bifurcation of limit cycles from a high-order critical point in plane
is becoming more and more important, there have been many results about this
problem. The B-T bifurcation from a saddle-node point was discussed in [16,19,21,
22]. Bifurcation of limit cycles from a degenerate critical point was investigated by
Han and Yu, see [6]. Especially, there were many results about bifurcations of limit
cycles from a nilpotent critical point, see [3, 4, 9, 17,18,20] and [5, 7, 8, 12–15].

The following planar real systems

dx

dt
= y +

∞∑
i+j=2

aijx
iyj = Φ(x, y),

dy

dt
=

∞∑
i+j=2

bijx
iyj = Ψ(x, y), (1.1)

whose functions of right hand are analytic in a neighborhood of the origin will be
discussed in this paper. The linear parts of (1.1) has double zero eigenvalues but
the matrix of the linearized system of (1.1) at the origin is not identically null. The
origin O(0, 0) of system (1.1) is called a nilpotent singular point.
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The paper will be divided into five sections. Some preliminary knowledge will
be given in section two. In section three, stability and bifurcation of limit cycle
from a nilpotent node (focus) will be discussed thoroughly. At last, we will give two
examples to show our results in section four and five.

2. Preliminary Knowledge

In [1] the author gave a definition of the multiplicity. In [10], the authors also gave
a definition of the multiple number of a critical point of system

dx

dt
=

n∑
k+j=0

akjx
kyj = P (x, y),

dy

dt
=

m∑
k+j=0

bkjx
kyj = Q(x, y),

(2.1)

by using the crossing number of two algebraic curves given by the right-hand sides
of a polynomial system, where the crossing number of two algebraic curves is the
number of intersection points of two algebraic curves. There is a natural equivalence
between the algebraic viewpoint and the geometric viewpoint.

Definition 2.1. Suppose (x0, y0) is an isolate critical point (2.1)( real or complex ),
if the crossing number of P (x, y) = 0 and Q(x, y) = 0 at (x0, y0) is N , then the point
(x0, y0) is called a N-multiple singular point of (2.1), N is called the multiplicity of
the point (x0, y0).

Definition 2.1 yields that

Proposition 2.1. Suppose that the function y = y(x) satisfies Φ(x, y(x)) = 0 and
y(0) = 0, if Ψ(x, y(x)) = AxN + o(xN ), A 6= 0, then the the origin of (1.1) is a
N-multiple singular point.

Under a small perturbation of system, a multiple critical point can decompose
into much lower multiple critical points. Now, we consider the perturbed system of
(1.1) and (2.1)

dx

dt
= Φ(x, y) + h(x, y, ε),

dy

dt
= Ψ(x, y) + g(x, y, ε), (2.2)

and
dx

dt
= P (x, y) + h(x, y, ε),

dy

dt
= Q(x, y) + g(x, y, ε), (2.3)

where ε = (ε1, ε2, · · · , εl) is a finite dimension small parameters, h(x, y, ε) and
g(x, y, ε) are power series of (x, y, ε) with nonzero convergence radius, and h(x, y, 0) =
0, g(x, y, 0) = 0. From Theorem 1 in [10] and Theorem 2.1 in [14], it is easy to get
the following theorem.

Theorem 2.1. Suppose the origin of system (1.1) ( or (2.1)) is a N-multiple sin-
gular point, then when ||ε|| << 1 , the sum of multiplicity of all complex singular
point in a sufficiently small neighborhood of origin of (2.2) ( or (2.3)) is exactly N .
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Example 2.1. From Proposition 2.1, the multiplicity of the origin of system

dx

dt
= y,

dy

dt
= AxN + yg(x, y) (2.4)

is exactly N , A 6= 0, g(x, y) is analytic in a neighborhood of origin. When ||ε|| � 1,
there are m critical points (εk, 0) in a neighborhood of origin of system

dx

dt
= y,

dy

dt
= A

m∏
k=1

(x− εk)lk + yg(x, y), (2.5)

and their multiplicity are lk, k = 1, 2, · · · ,m, where l1 + l2 + . . .+ lm = N .

Theorem 2.2. Suppose the index of the origin of system (1.1) ( or (2.1)) is k,
then when ||ε|| << 1, the sum of index of all real singular point in a sufficiently
small neighborhood of origin of (2.2) ( or (2.3))is exactly k.

Liu et al. gave the following definition in order to compute Lyapunov constant
in [11].

Definition 2.2. Let fk, gk be polynomials with respect to aij
′s, bij

′s, k = 1, 2, · · · .
If for an integer m, there exist polynomials with respect to aij

′s, bij
′s: ξ

(m)
1 , ξ

(m)
2 ,

· · · , ξ(m)
m−1, such that

fm = gm +
(
ξ
(m)
1 f1 + ξ

(m)
2 f2 + · · ·+ ξ

(m)
m−1fm−1

)
. (2.6)

Then, we say that fm and gm is algebraic equivalent, written by fm ∼ gm. If for
any integer m, we have fm ∼ gm, we say that the sequences of functions {fm} and
{gm} are algebraic equivalent, written by {fm} ∼ {gm}.

The authors have proved that a nilpotent-node (nilpotent-focus) point with mul-
tiplicity 2m+ 1 could be broken into a nilpotent-node (nilpotent-focus) with multi-
plicity 2m− 1 and two complex singular points by a small parameters perturbation
in [14]. If the stability at the elementary focus and nilpotent singular point is
different, limit cycle will be bifurcated out from sufficiently small neighborhood
of the element focus. In this paper, bifurcation of limit cycles from a nilpotent-
node (nilpotent-focus) point will be investigated by changing the stability of the
nilpotent-node (nilpotent-focus) point when the multiplicity is not decreased. It is
different from [14].

3. Stability and bifurcation of limit cycle at nilpo-
tent node (focus)

Using theorem proved in [23], see also in [2], we have

Proposition 3.1. Suppose that the function y = y(x) satisfies Φ(x, y(x)) = 0, y(0) =
0, and

Ψ(x, y(x)) = α2m+1x
2m+1 + o(x2m+1), α2m+1 < 0,(

∂Φ

∂x
+
∂Ψ

∂y

)
y=y(x)

= β2nx
2n + o(x2n), β2n 6= 0,

(3.1)
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where n,m are positive integers, then the origin of (1.1) is a node with multiplicity
2m + 1, and the origin is a node if and only if one of the following conditions is
satisfied:

C1 : 2n < m, α2m+1 < 0;

C2 : 2n = m, α2m+1 < 0, β2
2n + 4(m+ 1)α2m+1 > 0.

(3.2)

Furthermore, we easily get

Theorem 3.1. Suppose that the function y = y(x) satisfies Φ(x, y(x)) = 0, y(0) =
0, and (3.1) holds, then multiplicity of the origin of system (1.1) is 2m + 1 , Lya-
punov constants are

Vn = β2n, (3.3)

namely it is stable when β2n < 0 and unstable when β2n > 0.

Proof. From the discussions in [20] and [5], under conditions in Theorem 3.1,
system (1.1) could be transformed into Liénard system

du

dτ
= v,

dv

dτ
= α2m+1u

2m+1 + β2nvu
2ng(u) (3.4)

by the following analytic changes

u = x+

∞∑
k+j=2

a′kjx
kyj ,

v = y +

∞∑
k+j=2

b′kjx
kyj ,

dt

dτ
= 1 +

∞∑
k+j=1

c′kjx
kyj ,

(3.5)

where g(u) is analytic at u = 0, and g(0) = 1. Let V = v2 − 1
m+1α2m+1u

2m+2,

dV

dτ

∣∣∣∣
(3.4)

= 2β2nv
2u2ng(u). (3.6)

So the conclusion in Theorem 3.1 holds.
The Theorem 3.1 leads to the following theorem

Theorem 3.2. Suppose that the function y = y(x) satisfies Φ(x, y(x)) = 0, y(0) =
0, and

Ψ(x, y(x)) = α2m+1x
2m+1 + o(x2m+1), α2m+1 < 0,(

∂Φ

∂x
+
∂Ψ

∂y

)
y=y(x)

=

n∑
k=1

β2k
(
x2k + o(x2k)

)
, β2n 6= 0,

(3.7)

where n,m are positive integers, then there exist n−1 limit cycles in a neighborhood
of origin of system (1.1) when

0 < |β2| � |β4| � · · · |β2n|, β2kβ2k+2 < 0, k = 1, 2, · · · , n− 1. (3.8)
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Example 3.1. From Theorem 3.2, when (3.8) holds, there exist n− 1 limit cycles
in a neighborhood of origin of system

dx

dt
= y,

dy

dt
= −x2m+1 + y

n∑
k=1

β2kx
2k. (3.9)

Suppose O is a nilpotent-node of system

dx

dt
= y +

2n+1∑
k+j=2

akjx
kyj ,

dy

dt
=

2n+1∑
k+j=2

bkjx
kyj , (3.10)

we denote the number of limit cycles which could be bifurcated from origin of (3.10)
by changing the stability of the nilpotent-node point when the multiplicity is not
decreased by N(2n + 1). It is easy to know that multiplicity of the nilpotent-
node point O is not more than (2n + 1)2 from Bezout theorem and definition 2.1.
Combining with 3.1, we could get

Theorem 3.3.

N(2n+ 1) ≤ n2 + n− 1. (3.11)

We will give two examples in Section 4 and Section 5 to show that the upper
bound is achieved when n = 1 and n = 2 in (3.11) respectively, namely N(3) =
1, N(5) = 5.

4. N(3)=1

In this section, we will prove that the following cubic system

dx

dt
= y + x2 + ε2y2 + ε2x2y − xy2 + εy3 = X(x, y),

dy

dt
= −2xy − 2εy2 − 2x3 − 2εx2y − 2y3 = Y (x, y).

(4.1)

has only one limit cycle in a neighborhood of the origin, namely N(3) = 1. For
system (4.1), a solution for X(x, y(x)) = 0 and y(0) = 0 is

y = y(x) = −x2 + x5 + εx6 + ε2x7 + (−2 + ε3)x8 + o(x8), (4.2)

and

Y (x, y(x)) = −2x9 + o(x9),(
∂X

∂x
+
∂Y

∂y

)∣∣∣∣
y=y(x)

= 2εx2(1− εx)− 7x4 + o(x4).
(4.3)

From (4.3), β2 = 2ε, β4 = −7, α9 = −2 < 0, then ∆ = β2
4 + 20α9 = 9 > 0

when ε = 0, Theorem 3.2 shows that

Theorem 4.1. The origin of system (4.1) is a nilpotent node of multiplicity 9, and
there is a limit cycle in a neighborhood of the origin of system (4.1) when 0 < ε� 1.
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5. N(2) = 5

In this section, we will prove that the upper bound could be reached when n = 2.
A class of Z2-equivariant quintic with 25-multiple nilpotent node O(0, 0)

dx

dt
= y +

∑
k+j=3

akjx
kyj +

∑
k+j=5

akjx
kyj = X(x, y),

dy

dt
=
∑

k+j=3

bkjx
kyj +

∑
k+j=5

bkjx
kyj = Y (x, y),

(5.1)

where

a30 =1, a21 = 7λ1, a12 = λ1λ3,

a03 =
1

8
(−1029λ31 + 140λ41 + 343λ21λ2 − 12λ31λ2 − 35λ1λ

2
2 + λ32

− 28λ21λ3 + 4λ1λ2λ3 + 16λ4 − 56λ21λ5 − 8λ1λ2λ5),

a50 =0, a41 = λ1λ5, a32 = λ4,

a23 =
1

4
λ1(−343λ41 + 4λ51 + 70λ31λ2 − 3λ21λ

2
2 − 4λ31λ3

+ 28λ4 − 196λ21λ5 + 8λ31λ5 + 4λ1λ3λ5 − 4λ1λ
2
5),

a05 =
1

16
(−50421λ71 + 1960λ81 − 16λ91 + 19894λ61λ2 − 392λ71λ2 − 2744λ51λ

2
2

+ 16λ61λ
2
2 + 154λ41λ

3
2 + 686λ21λ2λ4 − 24λ31λ2λ4 − 70λ1λ

2
2λ4

+ 2λ32λ4 − 56λ21λ3λ4 + 8λ1λ2λ3λ4 + 16λ24 + 14406λ51λ5

+ 1960λ61λ5 − 64λ71λ5 − 4802λ41λ2λ5 − 616λ51λ2λ5 + 490λ31λ
2
2λ5

+ 32λ41λ
2
2λ5 − 14λ21λ

3
2λ5 + 392λ41λ3λ5 + 64λ51λ3λ5

− 56λ31λ2λ3λ5 − 112λ21λ4λ5 − 16λ1λ2λ4λ5 − 64λ51λ
2
5 + 112λ31λ2λ

2
5),

a14 =
1

8
λ1(−7203λ51 + 84λ61 + 1813λ41λ2 − 4λ51λ2 − 133λ31λ

2
2 + 3λ21λ

3
2 − 84λ41λ3

+ 4λ31λ2λ3 + 8λ3λ4 − 1029λ31λ5 + 308λ41λ5 + 343λ21λ2λ5 − 20λ31λ2λ5

− 35λ1λ
2
2λ5 + λ32λ5 − 84λ21λ3λ5 + 4λ1λ2λ3λ5 + 56λ21λ

2
5 − 8λ1λ2λ

2
5),

b30 =0, b21 = λ1, b12 = −λ1(7λ1 − λ2),

b03 =
1

4
λ1(49λ21 + 4λ31 − 14λ1λ2 + λ22),

b50 =λ1, b41 = λ1λ2,

b32 =
1

4
λ1(−147λ21 + 4λ31 + 14λ1λ2 + λ22 + 4λ1λ3 − 4λ1λ5),

b23 =
1

8
λ1(−343λ31 + 196λ41 + 147λ21λ2 − 12λ31λ2 − 21λ1λ

2
2 + λ32

− 84λ21λ3 + 12λ1λ2λ3 + 8λ4 + 56λ21λ5 − 16λ1λ2λ5),

b14 =− 1

8
λ1(−7203λ41 + 294λ51 + 8λ61 + 3430λ31λ2 − 84λ41λ2 − 588λ21λ

2
2 + 6λ31λ

2
2

+ 42λ1λ
3
2 − λ42 − 294λ31λ3 − 16λ41λ3 + 84λ21λ2λ3 − 6λ1λ

2
2λ3

+ 56λ1λ4 − 8λ2λ4 + 98λ31λ5 + 24λ41λ5 − 84λ21λ2λ5 + 10λ1λ
2
2λ5),

(5.2)
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b05 =
1

32
λ1(−50421λ51−6860λ61+672λ71+31213λ41λ2+2156λ51λ2−64λ61λ2−7546λ31λ

2
2

− 196λ41λ
2
2+882λ21λ

3
2+4λ31λ

3
2−49λ1λ

4
2+λ52−1372λ41λ3−224λ51λ3+588λ31λ2λ3

+ 32λ41λ2λ3−84λ21λ
2
2λ3+4λ1λ

3
2λ3+392λ21λ4+32λ31λ4−112λ1λ2λ4+8λ22λ4

+ 224λ51λ5 − 392λ31λ2λ5 − 64λ41λ2λ5 + 112λ21λ
2
2λ5 − 8λ1λ

3
2λ5)

(5.3)

will be investigated in this section.
Suppose that y = y(x) is the only solution of X(x, y(x)) = 0 and y(0) = 0,

y(x) and Y (x, y(x)) are odd functions of x because (5.1) is Z2-equivariant, and(
∂X
∂x + ∂Y

∂y

)∣∣∣
y=y(x)

is an even function of x. We have

Y (x, y(x)) = α25x
25 + o(x25),(

∂X

∂x
+
∂Y

∂y

)∣∣∣∣
y=y(x)

=

6∑
k=1

β2kx
2k + o(x12),

(5.4)

where

α25 = − 1

16
λ101 (−343λ21 + 4λ31 + 70λ1λ2 − 3λ22 − 4λ1λ3 + 8λ1λ5)2,

β2 = 3 + λ1, β4 ∼ 3(56 + λ2),

β6 ∼ −
3

4
(−59 + 28λ3 − 40λ5),

β8 ∼ −6(675 + λ4 − 93λ5),

β10 ∼ −
27

49
(477 + 4λ5)(93 + λ5),

β12 ∼ 972(477 + 4λ5).

(5.5)

Theorem 5.1. If

λ1 = −3− ε1, λ2 = −56 + ε2,

λ3 =
1

4
(−523 + 4ε3 + 40ε5),

λ4 = −9324− ε4 + 651ε5, λ5 = −93 + 7ε5,

(5.6)

then the origin of system (5.1) is a nilpotent node with multiplicity 25, when

0 < ε1 � ε2 � ε3 � ε4 � ε5 � 1, (5.7)

there exist 5 limit cycles in a neighborhood of system (5.1).

Proof. From (5.5), β25 < 0 when (5.6) and (5.6) hold, and

β2 = −ε1, β4 ∼ 3ε2, β6 ∼ −21ε3, β8 ∼ 6ε4,

β10 ∼ −405ε5 + o(ε5), β12 ∼ 102060,
(5.8)

and when ε1 = ε2 = ε3 = ε4 = ε5 = 0, we have

∆ = β2
12 + 52α25 = 4198383900 > 0. (5.9)

So the conclusion in Theorem 5.1 hold from Theorem 3.2.
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