For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 3, 2017, Pages 1070-1094                                                                DOI:10.11948/2017067
Bifurcation analysis of an SIRS epidemic model with standard incidence rate and saturated treatment function
Yixian Gao,Weipeng Zhang,Dan Liu,Yanju Xiao
Keywords:Epidemic model, saturated treatment, stability, bifurcation
Abstract:
      An epidemic model with standard incidence rate and saturated treatment function of infectious individuals is proposed to understand the effect of the capacity for treatment of infective individuals on the disease spread. The treatment function in this paper is a continuous and differential function which exhibits the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. It is proved that the existence and stability of the disease-free and endemic equilibria for the model are not only related to the basic reproduction number but also to the capacity for treatment of infective individuals. And a backward bifurcation is found when the capacity is not enough. By computing the first Lyapunov coefficient, we can determine the type of Hopf bifurcation, i.e., subcritical Hopf bifurcation or supercritical Hopf bifurcation. We also show that under some conditions the model undergoes Bogdanov-Takens bifurcation. Finally, numerical simulations are given to support some of the theoretical results.
PDF      Download reader