For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 2, 2017, Pages 745-769                                                                DOI:10.11948/2017047
Complex dynamics of a simple 3D autonomous chaotic system with four-wing
Xianyi Li,Chang Li,Haijun Wang
Keywords:Four-wing chaotic system, Hopf bifurcation, heteroclinic orbit, singularly degenerate heteroclinic cycle
Abstract:
      The present paper revisits a three dimensional (3D) autonomous chaotic system with four-wing occurring in the known literature [Nonlinear Dyn (2010) 60(3): 443--457] with the entitle ``A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems'' and is devoted to discussing its complex dynamical behaviors, mainly for its non-isolated equilibria, Hopf bifurcation, heteroclinic orbit and singularly degenerate heteroclinic cycles, etc. Firstly, the detailed distribution of its equilibrium points is formulated. Secondly, the local behaviors of its equilibria, especially the Hopf bifurcation, are studied. Thirdly, its such singular orbits as the heteroclinic orbits and singularly degenerate heteroclinic cycles are exploited. In particular, numerical simulations demonstrate that this system not only has four heteroclinic orbits to the origin and other four symmetry equilibria, but also two different kinds of infinitely many singularly degenerate heteroclinic cycles with the corresponding two-wing and four-wing chaotic attractors nearby.
PDF      Download reader