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COMPLEX DYNAMICS OF A SIMPLE 3D
AUTONOMOUS CHAOTIC SYSTEM WITH

FOUR-WING∗

Xianyi Li1,†, Chang Li2 and Haijun Wang1

Abstract The present paper revisits a three dimensional (3D) autonomous
chaotic system with four-wing occurring in the known literature [Nonlinear
Dyn (2010) 60(3): 443–457] with the entitle “A new type of four-wing chaotic
attractors in 3-D quadratic autonomous systems” and is devoted to discussing
its complex dynamical behaviors, mainly for its non-isolated equilibria, Hopf
bifurcation, heteroclinic orbit and singularly degenerate heteroclinic cycles,
etc. Firstly, the detailed distribution of its equilibrium points is formulated.
Secondly, the local behaviors of its equilibria, especially the Hopf bifurcation,
are studied. Thirdly, its such singular orbits as the heteroclinic orbits and
singularly degenerate heteroclinic cycles are exploited. In particular, numer-
ical simulations demonstrate that this system not only has four heteroclinic
orbits to the origin and other four symmetry equilibria, but also two differ-
ent kinds of infinitely many singularly degenerate heteroclinic cycles with the
corresponding two-wing and four-wing chaotic attractors nearby.

Keywords Four-wing chaotic system, Hopf bifurcation, heteroclinic orbit,
singularly degenerate heteroclinic cycle.
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1. Introduction

The reclamation of chaos field is said to date back to the year as early as 1961 [1].
Just then, the graduate student Yoshisuke Ueda discovered the phenomenon of
chaos when he studied the Duffing–van der Pol oscillator and other combinations.
However, his result was not discouraged until his professor published his observa-
tions of chaos after many years. Later in 1963, by simplifying a twelve-dimensional
system of differential equations to model atmospheric convection, the meteorologist
Edward Lorenz at the Massachusetts Institute of Technology eventually obtained a
three-dimensional autonomous dissipative system with two quadratic nonlinearities.
This simple model was found to possess sensitive dependence on initial conditions
and exhibits a seemingly stochastic behavior, in particular, its phase illustrates a
butterfly-shaped singular attractor under some certain parameters and initial con-
ditions. All of the interesting results [22] were reported in the known literature
“Journal of the Atmospheric Sciences”. From then on, the system, i.e., the Lorenz
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system named by others later, is considered the landmark of study of chaos theory.
Because it not only sheds light on revealing the nature of chaos [23, 58] but also
motivates other researchers to propose and study new chaotic systems related to it
from both theory [3, 4, 24–39,55,57,59–63,74] and applications [2, 5, 53,64,65].

The results from the present investigations suggest that chaos has such inter-
esting properties [8] as stemming from nonlinear systems, having at least one posi-
tive Lyapunov exponent in the discussed model [14, 15, 40], extremely sensitive de-
pendence on initial conditions, deterministicness, unpredictability, self-excited and
hidden attractors [16–19, 41–46, 51, 66–71, 75–77], Yin attractors [9, 10], extensive
existence in nature and so on.

However, the forming mechanism of chaos is not very clear up to now. Hence,
researchers who come from different disciplines, for example mathematics, physics,
biology, electronics, astronomy, sentics, engineering, even the inter-discipline among
them and so on, are devoting to giving their distinct and unique visual angles to
chaos, aiming to cover all aspects of chaos.

Among this effort, Huang et al [12, 13] investigated the stochastic chaotic sys-
tems, i.e., stochastic Lorenz family of chaotic systems with jump and stochastic
Lorenz-Stenflo system; Ding and Jiang [7] studied the double Hopf bifurcation and
chaos of Liu system with delayed feedback; Liu and Chen [47] explored the chaotic
behavior in a new fractional-order love triangle system with competition, etc. Al-
though these novel models open up some new windows to watch the chaos, their
complex structures make one a bit confused to reveal the nature of chaos in their
own rights.

In this awkward position, Sprott [59] proposed an interesting theme on “Elegant
chaos” in the sense of showing that interesting and realistic behaviors can result
from such extremely simple models. Such kind of models are of importance in
applications. For example, simple structure of any chaotic system is not only easier
to design circuit, but also more accessible to the populace. However, almost all
systems listed in [59] only generate the kind of single wing or scroll chaotic attractor.
Therefore, constructing simple models displaying multiple–wing or multiple–scroll
chaotic attractor is a desirable and challenging task.

In the endeavor, Wang et al recently in [72] proposed and considered the follow-
ing two 3D autonomous chaotic systems

ẋ1 = a1x1 + c1y1z1,

ẏ1 = b1x1 + d1y1 − x1z1,

ż1 = e1z1 + f1x1y1,

(1.1)

and 
ẋ2 = a2x2 + b2y2 + c2x2z2,

ẏ2 = d2y2 − x2z2,

ż2 = e2z2 + f2x2y2,

(1.2)

where ai, bi, ci, di, ei ∈ R, i = 1, 2, f1 ∈ R− and f2 ∈ R+ are all constants and xi,
yi and zi, i = 1, 2, are the state variables.

Both systems (1.1) and (1.2) are the simpler 3D smooth autonomous chaotic
ones which can generate four-wing butterfly-shape chaotic attractors in the sense
of the less number of both liner and nonlinear terms in the right hand of such
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dynamical systems, compared with the ones [6, 48, 56, 73, 78]. They are mainly
investigated in view of point of their equilibria, chaotic phase portraits, Poincaré
mapping, bifurcation diagram, Lyapunov exponent, spectrum versus parameters
and so on. Although some good work has been done in [72], there still are some
problems in that paper.

First, one can not help asking: what are the necessary conditions on their pa-
rameters in order to make both systems (1.1) and (1.2) produce four-wing butterfly-
shaped chaotic attractors?

Let’s first consider the first equation and the third equation of system (1.1), i.e.

ẋ1 = a1x1 + c1y1z1, (1.3)

and
ż1 = e1z1 + f1x1y1. (1.4)

By multiplying both sides of equations (1.3) and (1.4) by f1x1 and c1z1, respectively,
one gets

f1x1ẋ1 = a1f1x
2
1 + c1f1x1y1z1, (1.5)

and
c1z1ż1 = c1e1z

2
1 + c1f1x1y1z1. (1.6)

Subtracting both sides of equations (1.5) and (1.6) leads to

f1x1ẋ1 − c1z1ż1 = a1f1x
2
1 − c1e1z

2
1 , (1.7)

which is equivalent to

d(f1x
2
1 − c1z2

1)

dt
= 2a1(f1x

2
1 − c1z2

1) + 2c1(a1 − e1)z2
1 . (1.8)

Solving the above equation (1.8) yields

(f1x
2
1−c1z2

1)e−2a1t−(f1x
2
10
−c1z2

10
)e−2a1t0 =

∫ t

t0

2c1(a1−e1)z2
1(τ)e−2a1τdτ, (1.9)

where x10 and z10 are the initial states of system (1.1).
So, in order to discuss the ergodicity, dissipativity and invariance of system (1.1),

it suffices to analyze the function (f1x
2
1(t)−c1z2

1(t))e−2a1t. It follows from equation
(1.9) that (f1x

2
1(t) − c1z

2
1(t))e−2a1t is increasing in t ∈ [t0,∞) for a1 > e1 and

c1 > 0 or a1 < e1 and c1 < 0. Therefore, these give some links for the necessary
conditions on the parameters to make system (1.1) produce chaotic attractors.

Next, one can easily see that system (1.1) with c1 > 0 is topologically equivalent
to system (1.2) with c2 > 0. ( This indicates Remark 1 [72, p. 447] is not precise.)

In fact, on the one hand, the homothetic transformation

x2 = y1, y2 = x1, z2 = −c1z1,

changes system (1.1) into 
ẋ2 = d1x2 + b1y2 + 1

c1
y2z2,

ẏ2 = a1y2 − x2z2,

ż2 = e1z2 − c1f1x2y2,

(1.10)
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which is a special case of system (1.2).

On the other hand, the corresponding inverse transformation

x1 = y2, y1 = x2, z1 = −1

c
z2,

brings system (1.2) into 
ẋ1 = d2x1 + c1y1z1,

ẏ1 = b2x1 + a2y1 − c1c2x1z1,

ż1 = e2z1 − f2
c1
x1y1,

(1.11)

which reads that system (1.2) is only a special case of system (1.1).

Hence, for the two systems (1.1) and (1.2), it suffices to only consider system
(1.1). Having carried out a great many times of numerical simulations, one finds
that the solutions of system (1.1) tend to infinity for c1 < 0 . Hence, one only
studies system (1.1) with c1 > 0. Noticing that the homothetic transformation

x = ±
√
−f1x1, y = ±

√
−c1f1y1, z = ±

√
c1z1,

changes system (1.1) into 
ẋ = a1x+ yz,

ẏ = ±b1
√
c1x+ d1y − xz,

ż = e1z − xy,

(1.12)

for convenience of writing, system (1.12) may be re-written as
ẋ = ax+ yz,

ẏ = bx+ dy − xz,

ż = −cz − xy,

(1.13)

where a, b, c, d ∈ R.

So, in the sequel, we mainly consider system (1.13). Anyway, some of other rich
dynamics of system (1.13), i.e., system (1.1), for example, for its Hopf bifurcation,
heteroclinic orbit, singularly degenerate heteroclinic cycle, etc, have not been con-
sidered yet at all. So, our main aim in this article is, by some deeper investigations
and combining some numerical simulations, to formulate some new theoretical re-
sults of system (1.13), mainly for its different kind of equilibria, Hopf bifurcation
and singular orbits.

The rest of this paper is organized as follows. The local dynamical behaviors
of system (1.13), such as different equilibrium points and their stability and bifur-
cation, are discussed in Section 2. In Section 3, combining with the technique of
numerical simulation, we explore the existence of some important singular orbits,
including the singularly degenerate heteroclinic cycles and the heteroclinic orbits.
Finally, some conclusions are drawn in Section 4.
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2. Local dynamical behaviors of system (1.13)

In this section one considers the local dynamical behaviors of system (1.13) accord-
ing to the following subsections.

2.1. Distribution of equilibrium point of system (1.13)

By some simple analysis, one can easily derive the following conclusion.

Theorem 2.1. For the distribution of equilibrium point of system (1.13), the fol-
lowing statements hold. E0 = (0, 0, 0) is always its an equilibrium point.

1. When a = 0, if c = 0, then these points Ez = (0, 0, z) (z ∈ R) in the z-axis
and these points Ebx = (x, 0, b) are the non-isolated equilibria of system (1.13);
if d = 0, then these points Ey = (0, y, 0) (y ∈ R) in the y-axis are the non-
isolated equilibria of system (1.13); if cd 6= 0, then, for b = 0, these points
Ex = (x, 0, 0) (x ∈ R) in the x-axis are the non-isolated equilibria of system
(1.13); for b 6= 0, E0 = (0, 0, 0) is a unique isolate equilibrium point of system
(1.13).

2. When ac < 0, d 6= 0 or ac 6= 0, b2 − 4ad < 0, E0 = (0, 0, 0) is the single
equilibrium point of system (1.13); when ac < 0, d = 0, these points Ey =
(0, y, 0) (y ∈ R) in the y-axis are the non-isolated equilibria of system (1.13).

3. When ac > 0, system (1.13) has two symmetric equilibria

E1,2 = (± b

2a

√
ac,∓

√
ac,

b

2
)

for b2 − 4ad = 0, while, for b2 − 4ad > 0, two pairs of symmetric ones

E3,4 = (±b+
√
b2 − 4ad

2a

√
ac,∓

√
ac,

b+
√
b2 − 4ad

2
)

and

E5,6 = (±b−
√
b2 − 4ad

2a

√
ac,∓

√
ac,

b−
√
b2 − 4ad

2
).

2.2. Local dynamical behaviors of E0

Employing the linearized analysis and the center manifold theory [20], one derives
the local dynamical behaviors of E0.

At E0, the characteristic equation of the Jacobian matrix of system (1.13) is

(λ− a)(λ− d)(λ+ c) = 0 (2.1)

with three roots λ1 = a, λ2 = d and λ3 = −c.
Consider two cases: 1. acd 6= 0; 2. acd = 0.

• 2.2.1 acd 6= 0.
Then E0 is a hyperbolic stable or unstable node or saddle.

• 2.2.2 acd = 0.
Subcase (i) a = 0, d 6= 0 and c 6= 0.
Obviously, E0 is unstable when d > 0 or c < 0. While d < 0 and c > 0, one can

discuss its stability by Center Manifold Theorem [20]. It may be divided into the
following two subcases: (A) b 6= 0 and (B) b = 0.
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The subcase (A) b 6= 0 implies that Eq. (2.1) has three eigenvalues λ1 = 0, λ2 =
d and λ3 = −c with the corresponding eigenvectors v1 = (d,−b, 0), v2 = (0, 1, 0)
and v3 = (0, 0, 1). Therefore, some bifurcations may occur at the non-hyperbolic
equilibrium E0.

First, we study the fold bifurcation at the origin E0 using the bifurcation theory
[20]. The following statement holds.

Theorem 2.2. If a = 0, b 6= 0, d < 0 and c > 0, system (1.13) undergoes a
degenerate fold bifurcation at the origin E0.

Proof. Since Eq. (2.1) has a zero root λ1 = 0 when a = 0, the fold bifurcation
may occur at E0. Performing some simple algebra computations, one can easily
obtain

p =
1

d


1

0

0

 and q =


d

−b

0

 (2.2)

to satisfy

Aq = 0, AT p = 0, 〈p, q〉 =

3∑
i=1

p̄iqi = 1,

where 〈·, ·〉 is the standard scalar product in R3.
The restriction of system (1.13) to the 1D center manifold has the form

Ẋ = σX2 +O(|X3|), X ∈ R, (2.3)

where the coefficient σ can be computed by the formula

σ =
1

2
〈p,B(q, q)〉. (2.4)

If σ 6= 0, Eq. (2.3) is locally topologically equivalent to the normal form

Ẋ = β1 + σX2,

where β1 is the unfolding parameter.
Substituting (2.2) into (2.4) yields σ = 0. So, the fold bifurcation is degenerate.

Next, by employing bifurcation theory [11,20], one may derive the result on the
pitchfork bifurcation at E0 as follows.

Theorem 2.3. If |a| � 1, b 6= 0 and c 6= 0, system (1.13) undergoes a non-
degenerate pitchfork bifurcation at E0.

Proof. Let a = a0 + δ = 0 + δ = δ. Then system (1.13) can be changed into the
following system 

ẋ = δx+ yz,

ẏ = bx+ dy − xz,

ż = −cz − xy,

(2.5)

where δ is a small parameter.
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Making the linear transformation
x

y

z

 =


d 0 0

−b 1 0

0 0 1



x1

y1

z1

 , (2.6)

the system (2.5) is converted into the one
ẋ1

ẏ1

ż1

 =


δ 0 0

bδ d 0

0 0 −c



x1

y1

z1

+


1
dz1(−bx1 + y1)

−[(d+ b2

d )x1 − b
dy1]z1

−dx1(−bx1 + y1)

 . (2.7)

Let

W c
loc =

{
(x1, y1, z1)× δ ∈ R3 × R|y1 = h1(x1, δ), z1 = h2(x1, δ), |x1| < ε, |δ| < ε̄

}
,

where h1(0, 0) = 0, h2(0, 0) = 0, ∂h1

∂x1
(0, 0) = 0, ∂h1

∂δ (0, 0) = 0, ∂h2

∂x1
(0, 0) = 0,

∂h2

∂δ (0, 0) = 0 with ε, ε̄ sufficiently small.
Assume

y1 = h1(x1, δ) = A1x
2
1 +A2x1δ +A3δ

2 + h.o.t.,

z1 = h2(x1, δ) = B1x
2
1 +B2x1δ +B3δ

2 + h.o.t.,

where the high-order terms (h.o.t.) are of the orders O(xk1δ
3−k), k = 1, 2, 3. Using

the procedures as in [11,20], we obtain the vector field reduced to the center manifold

ẋ1 = h(x1, δ) = δx1 −
b2

c
(1 +

δ

d
)x3

1 + h.o.t. (2.8)

Since |a| � 1, b 6= 0 and c 6= 0, the so-called transversality and non-degeneracy
conditions

∂3h(x1, δ)

∂x3
1

|(0,0) = −6b2

c
6= 0,

∂2h(x1, δ)

∂x1∂δ
|(0,0) = 1 6= 0

(2.9)

of generic conditions hold for pitchfork bifurcation [11, 20]. Hence, system (1.13)
undergoes a non-degenerate pitchfork bifurcation when parameter a passes through
the critical value a0 = 0.

Moreover, when a = 0 and bd 6= 0, there is a one-dimensional center manifold,
and the stability of E0 on this center manifold is determined by the first non-zero

term − b
2

c of the right side of (2.8). Thus, E0 is stable (resp. unstable) on its
one-dimensional center manifold for c > 0 (resp. < 0).

The subcase (B) implies that E0 is more degenerate.
Subcase (ii) a 6= 0, d 6= 0 and c = 0. Then the following result may be easily

derived.

Lemma 2.1. Assume that a 6= 0, d 6= 0 and c = 0, then the center manifold of E0

is unique and coincides with the z–axis.



752 X. Li, C. Li & H. Wang

Table 1. The dynamical behavior of equilibrium E0 of system (1.13).

a d c b Type of E0 Property of E0

< 0 < 0 saddle a 2D W s
loc and a 1D Wu

loc

< 0 = 0 non–hyperbolic a 2D W s
loc and a 1D W c

loc

< 0 > 0 sink a 3D W s
loc

= 0 < 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

= 0 = 0 non–hyperbolic a 1D W s
loc and a 2D W c

loc

< 0 = 0 > 0 non–hyperbolic a 2D W s
loc and a 1D W c

loc

> 0 < 0 saddle a 1D W s
loc and a 2D Wu

loc

> 0 = 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

> 0 > 0 saddle a 2D W s
loc and a 1D Wu

loc

< 0 < 0 = 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 < 0 6= 0 non–hyperbolic a 1D W s
loc and a 2D Wu

loc

< 0 = 0 non–hyperbolic a 1D W s
loc and a 2D W c

loc

< 0 > 0 = 0 non–hyperbolic a 2D W s
loc and a 1D W c

loc

< 0 > 0 6= 0 non–hyperbolic a 3D W s
loc

= 0 < 0 non–hyperbolic a 2D W c
loc and a 1D Wu

loc

= 0 = 0 = 0 non–hyperbolic a 3D W c
loc

= 0 > 0 non–hyperbolic a 1D W s
loc and a 2D W c

loc

> 0 < 0 = 0 non–hyperbolic a 1D W c
loc and a 2D Wu

loc

> 0 < 0 6= 0 non–hyperbolic a 3D Wu
loc

> 0 = 0 non–hyperbolic a 2D W c
loc and a 1D Wu

loc

> 0 > 0 = 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

> 0 > 0 6= 0 non–hyperbolic a 2D W s
loc and a 1D Wu

loc

< 0 < 0 saddle a 1D W s
loc and a 2D Wu

loc

< 0 = 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 > 0 saddle a 2D W s
loc and a 1D Wu

loc

= 0 < 0 non–hyperbolic a 1D W c
loc and a 2D Wu

loc

= 0 = 0 non–hyperbolic a 2D W c
loc and a 1D Wu

loc

> 0 = 0 > 0 non–hyperbolic a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

> 0 < 0 source a 3D Wu
loc

> 0 = 0 non–hyperbolic a 1D W c
loc and a 2D Wu

loc

> 0 > 0 saddle a 1D W s
loc and a 2D Wu

loc

Subcase (iii) Other cases. They may be similarly discussed. All cases can be
summarized as follows.

Theorem 2.4. The local dynamical behaviors of equilibrium E0 of system (1.13)
are totally summarized in the Table 1 when a, b, c, d ∈ R4.

2.3. Behaviors of non-isolated equilibria Ez, E
b
x, Ey and Ex

In this subsection, one studies the dynamics of non-isolated equilibria Ez, E
b
x, Ey

and Ex.

2.3.1. Behaviors of Ez

When a = c = 0, system (1.13) has non-isolated equilibria Ez = (0, 0, z) for any

z ∈ R with the eigenvalues λ1,2 =
d±
√
d2+4z(b−z)

2 and λ3 = 0. It is easy to derive
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Table 2. The behavior of non-isolated equilibria Ez of system (1.13).

d z(b− z) Property of Ez
< 0 a 2D W s

loc and a 1D W c
loc

< 0 = 0 a 1D W s
loc and a 2D W c

loc

> 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 zero-Hopf bifurcation may occur

= 0 = 0 a 3D W c
loc

> 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 a 1D W c
loc and a 2D Wu

loc

> 0 = 0 a 2D W c
loc and a 1D Wu

loc

> 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

the following consequence.

Theorem 2.5. Assume that a = c = 0. Then system (1.13) has non-isolated
equilibria Ez. Moreover, the local dynamical behaviors of any one are formulated in
the Table 2.

2.3.2. Behaviors of Ebx

It follows from Theorem 2.1 that system (1.13) has the non-isolated equilibria Ebx =
(x, 0, b) (for any x, b ∈ R) when a = c = 0. The corresponding eigenvalues are

λ1,2 = d±
√
d2+4x2

2 and λ3 = 0. Hence, the dynamical properties for non-isolated
equilibria Ebx = (x, 0, b) may be deduced as follows:

(i) For d = x = 0, there is a 3D W c
loc at the neighbourhood of Ebx = (x, 0, b) for

any b ∈ R.

(ii) For d > (<)0, x = 0, there is a 1D Wu
loc ( W s

loc) and a 2D W c
loc at the

neighbourhood of Ebx = (x, 0, b) for any b ∈ R.

(iii) For x 6= 0, there is a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc at the neighbourhood

of Ebx = (x, 0, b) for any b ∈ R.

2.3.3. Behaviors of Ey

According to Theorem 2.1, system (1.13) has the non-isolated equilibria Ey =
(0, y, 0) (for any y ∈ R) for the following two cases.

(i) d = 0, a = 0 and c 6= 0

At this time, the eigenvalues for any one of Ey are λ1,2 =
−c±
√
c2−4y2

2 and
λ3 = 0. Since c 6= 0, λ1,2 < 0 or Re(λ1,2) < 0 for c > 0, and λ1,2 > 0 or
Re(λ1,2) > 0 for c < 0.

(ii) d = 0 and ac < 0

It is easy to obtain the corresponding eigenvalues λ1,2 =
(a−c)±

√
(a−c)2+4(ac−y2)

2
and λ3 = 0. Since ac < 0, λ1,2 < 0 or Re(λ1,2) < 0 for a − c < 0, and λ1,2 > 0 or
Re(λ1,2) > 0 for a− c > 0.
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Table 3. The behavior of non-isolated equilibria Ex of system (1.13).

d− c cd+ x2 Property of Ex
< 0 a 2D W s

loc and a 1D W c
loc

< 0 = 0 a 1D W s
loc and a 2D W c

loc

> 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

= 0 > 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

< 0 a 1D W c
loc and a 2D Wu

loc

> 0 = 0 a 2D W c
loc and a 1D Wu

loc

> 0 a 1D W s
loc, a 1D W c

loc and a 1D Wu
loc

2.3.4. Behaviors of Ex

It follows Theorem 2.1 that system (1.13) has the non-isolated equilibria Ex =
(x, 0, 0) (any x ∈ R) for a = b = 0 and cd 6= 0. All the eigenvalues for any one of

Ex are λ1,2 =
d−c±

√
(d−c)2+4(cd+x2)

2 and λ3 = 0.
Therefore, one may derive the following consequence.

Theorem 2.6. Assume that a = b = 0 and cd 6= 0. Then system (1.13) has
non-isolated equilibria Ex. Moreover, the local dynamical behaviors of any one are
formulated in the Table 3.

2.4. Behaviors of E1,2

In this subsection, one studies the dynamics of isolated equilibria E1,2. Notice that
ac > 0 and b2 = 4ad at this time. The characteristic equation of the Jacobian
matrix of system (1.13) at equilibria E1,2 is

λ3 + (c− a− d)λ2 − 2cdλ = 0

with the corresponding eigenvalues λ1 = 0 and λ2,3 =
a+d−c±

√
(a+d−c)2+8cd

2 . So,
the following statements are valid.

Theorem 2.7. Assume that ac > 0 and b2 = 4ad. Then system (1.13) has a pair
of non-hyperbolic equilibria E1,2. For b = 0, at their neighbourhood there exist as
least a two-dimensional center. For b 6= 0, at their neighbourhood there exist a 1D
W s
loc, a 1D W c

loc and a 1D Wu
loc.

Furthermore, one can study the fold and pitchfork bifurcation at E1,2 as well as
at E0. The following conclusion can be obtained.

Theorem 2.8. Assume that ac > 0 and b2 = 4ad. Then system (1.13) undergoes
a non-degenerate fold bifurcation but no pitchfork bifurcations at E1,2.

Remark 2.1. It follows Theorem 2.8 that two pairs of equilibria E3,4 and E5,6 are
produced through the fold bifurcations occurring at the twin equilibria E1,2.

2.5. Behavior of E3,4 and E5,6

In this subsection, by invoking the Routh–Hurwitz stability criterion [54] and bifur-
cation theory [20], we mainly study the stability and Hopf bifurcation of E3,4 and
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E5,6.
The characteristic equation of the Jacobian matrix of system (1.13) at any one

of the above four equilibria is

λ3 + (c− a− d)λ2 − bcz

a
λ+ 2bcz − 4acd = 0, (2.10)

where z = b+
√
b2−4ad
2 for E3,4 and z = b−

√
b2−4ad
2 for E5,6.

For convenience of discussion in the sequel, the Routh–Hurwitz stability criterion
[54] is stated as follows:

Lemma 2.2. The polynomial P (λ) = λ3 + p1λ
2 + p2λ + p3 with real coefficients

p1, p2 and p3 has all roots with negative real parts if and only if the numbers p1, p2

and p3 are positive and the inequality p1p2 > p3 is satisfied.

Remember that the previous condition for the existence of E3,4 and E5,6 is the
parameters a, b, c, d lie in the set W = {(a, b, c, d) ∈ R4, ac > 0, b2 − 4ad > 0}. For
convenience of discussion in the sequel, divide the set W into W1 and W2 as follows:

W1 = {(a, b, c, d) ∈W : a > 0, c > 0, b2 − 4ad > 0}

and
W2 = {(a, b, c, d) ∈W : a < 0, c < 0, b2 − 4ad > 0}.

Then W = W1 ∪W2.

2.5.1. Behavior of E3,4

Due to the symmetry between E3 and E4, it suffices to consider E3. The charac-
teristic equation of the Jacobian matrix of system (1.13) at E3 is

λ3 + (c− a− d)λ2− bc(b+
√
b2 − 4ad)

2a
λ+ c

√
b2 − 4ad(b+

√
b2 − 4ad) = 0. (2.11)

(In fact, it follows from (2.10) that the equilibria E3 and E4 have the same
characteristic equation, so, it is indeed sufficient to consider the equilibrium point
E3.) Now divide the set W1 into the union of the subsets W11 and W12, where

W11 = {(a, b, c, d) ∈W1 : b < 0, d < 0},
W12 = {(a, b, c, d) ∈W1 : b > 0 or b = 0, d < 0 or b < 0, d ≥ 0}.

For (a, b, c, d) ∈W1, define c10 = a+ d− 2a
√
b2−4ad
b . Denote W11 as

W11 = W111

⋃
W112

⋃
W113

⋃
W114,

where
W111 = {(a, b, c, d) ∈W11 : c > c10 > 0},
W112 = {(a, b, c, d) ∈W11 : c = c10 > 0},
W113 = {(a, b, c, d) ∈W11 : 0 < c < c10},
W114 = {(a, b, c, d) ∈W11 : c10 ≤ 0}.

Using Lemma 2.2, the following consequences may be easily derived.
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Theorem 2.9. The equilibrium E3 of system (1.13) is unstable for (a, b, c, d) ∈
W2 ∪W12 ∪W113 whereas E3 is asymptotically stable for (a, b, c, d) ∈W111

⋃
W114.

From the above Theorem 2.9, one can see that there will be a bifurcation oc-
currence for (a, b, c, d) ∈W112. Then, what kind of bifurcation is it ? Next, we will
give the answer. The following lemma is true.

Lemma 2.3. For (a, b, c, d) ∈ W112, system (1.13) undergoes a Andronov-Hopf
bifurcation at E3.

Proof. For (a, b, c, d) ∈W112, it follows that Eq.(2.11) has one negative real root

λ1 = 2a
√
b2−4ad
b and a pair of conjugate purely imaginary roots λ2,3 = ±ωi with

ω =
√

2a
√
b2−4ad
−b (a+ d− 2a

√
b2−4ad
b ). Taking into account that Re(λ2) = 0 at

c = c10, one obtains

dRe(λ2)

dc

∣∣∣∣
c=c10

= − ω2

2[ω2 + λ2
1]
< 0.

Hence, the transversal condition holds. Also, λ1 < 0. Therefore, all conditions
for Hopf bifurcation [20] to occur are met. So, the Hopf bifurcation happens at E3.
The proof for this lemma is over.

Therefore, one has the following result.

Theorem 2.10. The equilibria E3,4 of system (1.13) are unstable for (a, b, c, d) ∈
W2∪W12∪W113 whereas asymptotically stable for (a, b, c, d) ∈W111∪W114, and sys-
tem (1.13) undergoes Andronov-Hopf bifurcations at the equilibria E3,4 for (a,b,c,d)∈
W112.

For the numerical simulations, see Fig.1.
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Figure 1. Phase portraits of system (1.13) for (a, b, d, c) = (1,−1,−2, 5.0) and initial values
(x0, y0, z0) = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0), illustrating that system (1.13) undergoes Hopf
bifurcations at E3,4.
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2.5.2. Behavior of E5,6

It suffices to consider E5. Similar to dealing with the equilibrium point E3, divide
the set W1 into the union of the subsets W21 and W22, where

W21 = {(a, b, c, d) ∈W1 : b > 0, d < 0},

W22 = {(a, b, c, d) ∈W1 : b < 0 or b = 0, d < 0 or b > 0, d ≥ 0}.

For (a, b, c, d) ∈W21, define c20 = a+ d+ 2a
√
b2−4ad
b . Denote W21 as

W21 = W211

⋃
W212

⋃
W213

⋃
W214,

where

W211 = {(a, b, c, d) ∈W11 : c > c20 > 0},

W212 = {(a, b, c, d) ∈W11 : c = c20 > 0},

W213 = {(a, b, c, d) ∈W11 : 0 < c < c20},

W214 = {(a, b, c, d) ∈W11 : c20 ≤ 0}.

Then we can obtain the results for the stability and Hopf bifurcation of E5,6 as
follows.

Theorem 2.11. The equilibria E5,6 of system (1.13) are unstable for (a, b, c, d) ∈
W2 ∪W22 ∪W213 whereas E5,6 are asymptotically stable when (a, b, c, d) ∈ W211 ∪
W214, and system (1.13) undergoes Andronov-Hopf bifurcations at equilibria E5,6

for (a, b, c, d) ∈W212.

For the numerical simulations, see Fig.2.
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Figure 2. Phase portraits of system (1.13) when (a, b, d, c) = (1, 1,−2, 5.0) and initial values
(x0, y0, z0) = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0), which implies that system (1.13) undergoes Hopf
bifurcations at E5,6.
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3. Existence of singularly degenerate heteroclinic
cycle

As stated in [21, 49, 50, 52, 62, 63, 69, 70, 74] and the references therein, the impor-
tance of singularly degenerate heteroclinic cycle lies in that chaotic attractors can
be created when the singularly degenerate heteroclinic cycle disappears for cer-
tain parameter values of the system. For system (1.13), Wang et.al [72] did not
study the existence of singularly degenerate heteroclinic cycle at all. Up to now,
this has not been discussed in other literature as well as one knows. Since system
(1.13) is considered as the simplest chaotic system which can produce some four-
wing butterfly-shape chaotic attractors, it is interesting to study the existence of
singularly degenerate heteroclinic cycle, which may be helpful to understand the
mechanism of forming this kind of strange attractor. Some similar mechanics has
been verified in the Rabinovich system [49]. Whether or not can various chaotic
attractors, especially the interesting four-wing attractors, be bifurcated from singu-
larly degenerate heteroclinic cycle of system (1.13)? We will give a positive answer
in this section.
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Figure 3. Phase portraits of system (1.13) when (a) (a, b, d, c) = (2,−4,−3, 0) and initial values

Ea
1 = (±0.314 × 1e − 2,±0.382 × 1e − 2,−2), and Eb

1 = (±0.314 × 1e − 2,±0.382 × 1e − 2,−1), (b)
Ea

1 = (±0.314× 1e− 2,±0.382× 1e− 2,−1), and (a, b, d, c) = (6,−3,−9, 0), (a, b, d, c) = (4,−3,−7, 0).
These figures illustrate that system (1.13) has infinitely many degenerate heteroclinic cycles when a > 0,
d < 0, b < 0, c = 0 and a+ d < 0.

First, combining the dynamics of Ez and some suitable choice of parameters
a, b, c, d, one may derive the following conclusion.

Numerical Result. 3.1. For a > 0, d < 0, c = 0 and a + d < 0, the 1D unstable
manifold Wu(E1) of each normally hyperbolic saddle-like (see Figs. 3–4) E1 =
(0, 0, z1) tends to one of the normal hyperbolic stable focus-like E2 = (0, 0, z2)
given in Theorem 2.5 as t→∞, forming singularly degenerate heteroclinic cycles.

As suggested in [21,30,50,52,62,63,74], such the two-wing strange attractors as
shown in Figs. 5–6 can be created in a neighborhood of the families of singularly
degenerate heteroclinic cycles.

Now considering the similarity of system (1.13) and Rabinovich system [49] and
choosing some suitable parameters a, b, c, d, one may derive the following conclusion.
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Figure 4. Phase portraits of system (1.13) when (a) Ea
1 = (±0.314 × 1e − 2,±0.382 × 1e − 2,−1),

and (a, b, d, c) = (6, 3,−9, 0), (a, b, d, c) = (4, 3,−7, 0), (b) (a, b, d, c) = (2, 4,−3, 0), initial values Ea
1 =

(±0.314 × 1e − 2,±0.382 × 1e − 2, 2), and Eb
1 = (±0.314 × 1e − 2,±0.382 × 1e − 2, 1). These figures

illustrate that system (1.13) has infinitely many degenerate heteroclinic cycles when a > 0, d < 0, b > 0,
c = 0 and a+ d < 0.
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Figure 5. Phase portraits of system (1.13) when E1 = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0), (a)
(a, b, d, c) = (2,−8,−3, 0.0), (b) (a, b, d, c) = (2,−8,−3, 0.1). The figures demonstrate that system
(1.13) has some two-wing chaotic attractors which can be produced near the corresponding singularly
degenerate heteroclinic cycles for c > 0.

Numerical Result. 3.2. For a = b = 0 and d = −c 6= 0, the 1D unstable manifold
Wu(E1) of each normally hyperbolic saddle-like (see Figs. 7–8) E1 = (x1, 0, 0) tends
to one of the normal hyperbolic stable focus-like E2 = (x2, 0, 0) in the planes {y = z}
and {y = −z} as t→∞, forming singularly degenerate heteroclinic cycles.

Numerical Result. 3.3. For a = b = 0, d < 0, c > 0 and d − c < 0, the 1D
unstable manifold Wu(E1) of each normally hyperbolic saddle-like (see Fig. 10)
E1 = (x1, 0, 0) tends to one of the normal hyperbolic stable focus-like E2 = (x2, 0, 0)
as t→∞, forming singularly degenerate heteroclinic cycles.

Therefore, it follows from Numerical Result. 3.2 and [49, Theorem 4, p.275210-
4] that the following statements hold.
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Figure 6. Phase portraits of system (1.13) when E1 = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0), (a)
(a, b, d, c) = (2, 8,−3, 0.0), (b) (a, b, d, c) = (2, 8,−3, 0.1). The figures display that system (1.13) has
some two-wing chaotic attractors which can be produced near the corresponding singularly degenerate
heteroclinic cycles for c > 0.
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Figure 7. Phase portraits of system (1.13) when (a, b, d, c) = (0, 0,−2, 2) and (a) Ea
1 = (−144,±0.382×

1e − 2,±0.382 × 1e − 2), Eb
1 = (−120,±0.382 × 1e − 2,±0.382 × 1e − 2), Ec

1 = (−100,±0.382 × 1e −
2,±0.382×1e−2), (b) Ea

1 = (100,±0.382×1e−2,∓0.382×1e−2), Eb
1 = (70,±0.382×1e−2,∓0.382×

1e − 2), Ec
1 = (40,±0.382 × 1e − 2,∓0.382 × 1e − 2). The figures imply that system (1.13) has two

families of singularly degenerate heteroclinic cycles when a = b = 0 and for any −d = c > 0, one of
which is contained in the plane {y = z} and the other in the plane {y = −z}.

Theorem 3.1. For the parameter values a = b = 0 and for any d = −c 6= 0, system
(1.13) has another two families of singularly degenerate heteroclinic cycles. One of
the families is contained in the plane {y = z} and the other in the plane {y = −z}.
Moreover each family contains an infinite set of such degenerate cycles such that
they accumulate together at a heteroclinic cycle on the sphere of infinity when these
cycles run to infinity.

Except for the two-wing chaotic attractors illustrated in Figs. 5–6 occuring in
a neighborhood of the families of singularly degenerate heteroclinic cycles which
are shown in Figs. 3–4, one also detects the attractors of four wings type near the
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Figure 8. Phase portraits of system (1.13) when (a, b, d, c) = (0, 0, 2,−2) and (a) Ea
1 = (140,±0.382×

1e−2,±0.382×1e−2), Eb
1 = (100,±0.382×1e−2,±0.382×1e−2), Ec

1 = (60,±0.382×1e−2,±0.382×
1e−2), (b) Ea

1 = (−130,±0.382×1e−2,∓0.382×1e−2), Eb
1 = (−90,±0.382×1e−2,∓0.382×1e−2),

Ec
1 = (−40,±0.382 × 1e − 2,∓0.382 × 1e − 2). The figures demonstrate that system (1.13) has two

families of singularly degenerate heteroclinic cycles when a = b = 0 and for any −d = c < 0, one of
which is contained in the plane {y = z} and the other in the plane {y = −z}.

singularly degenerate heteroclinic cycles displayed in Figs. 9, 11, especially the ones
which lies in the plane {y = z} and the others in the plane {y = −z}, see Fig. 9.
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Figure 9. Phase portraits of system (1.13) when (a, b, d, c) = (1.2, 1.1,−2, 3) and (a) (x0, y0, z0) =
(3,±0.382 × 1e − 2,±0.382 × 1e − 2), (b) (x0, y0, z0) = (3,±0.382 × 1e − 2,∓0.382 × 1e − 2). The
figures illustrate that system (1.13) has some four-wing chaotic attractors near two families of singularly
degenerate heteroclinic cycles, one of which is contained in the plane {y = z} and the other in the plane
{y = −z}.

4. Existence of heteroclinic orbit

In order to discuss the herteroclinic orbit of system (1.13), let’s review some facts
as follows.



762 X. Li, C. Li & H. Wang

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

20

z
y

x

E
1

E
2

(a)

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

20

z

x

y

E
1

E
2

(b)

Figure 10. Phase portraits of system (1.13) when (x0, y0, z0) = (15,±0.314× 1e− 2,±0.382× 1e− 2)
and (a) (a, b, d, c) = (0, 0,−1, 1), (b) (a, b, d, c) = (0, 0,−1, 1.6). The figures demonstrate that system
(1.13) has some singularly degenerate heteroclinic when d < 0, c > 0 and d− c < 0.
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Figure 11. Phase portraits of system (1.13) when (x0, y0, z0) = (15,±0.314× 1e− 2,±0.382× 1e− 2)
and (a) (a, b, d, c) = (0.7,−2,−1, 1.6), (b) (a, b, d, c) = (0.7, 2,−1, 1.6). The figures suggest that system
(1.13) has some four-wing chaotic attractors near singularly degenerate heteroclinic when d < 0, c > 0,
d− c < 0, a > 0 and b 6= 0.

Fact 4.1. E0 is a saddle but E3,4 are locally asymptotically stable when (a, b, c, d) ∈
W111 ∪W114 according to Theorem 2.10.

Fact 4.2. E0 is a saddle while E5,6 are locally asymptotically stable when (a,b,c,d)∈
W211 ∪W214 according to Theorem 2.11.

Heuristically, one has the following numerical simulations concerning with the
herteroclinic orbit of system (1.13), see Figs. 12–13.

Numerical Result. 4.1. For (a, b, c, d) ∈ W111 ∪W114, the 1D unstable manifold
Wu(E0) of the saddle E0 tends to the stable manifolds W s(E3,4) of the focus E3,4
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presented in Remark 4.1 as t→∞, forming two heteroclinic orbits to E0 and E3,4,
see Fig. 12.

Numerical Result. 4.2. For (a, b, c, d) ∈ W211 ∪W214, the 1D unstable manifold
Wu(E0) of the saddle E0 tends to the stable manifolds W s(E5,6) of the focus E5,6

presented in Remark 4.2 as t→∞, forming two heteroclinic orbits to E0 and E5,6,
see Fig. 13.
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Figure 12. Phase portraits of system (1.13) when (x0, y0, z0) = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0)
and parameters (a) (a, b, d, c) = (1,−3,−10, 0.05), (b) (a, b, d, c) = (1,−1,−2, 5.2). Both figures suggest
that system (1.13) has two heteroclinic orbits to E0 and E3,4 for (a, b, c, d) ∈ W111 ∪W114.
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Figure 13. Phase portraits of system (1.13) when (x0, y0, z0) = (±0.314 × 1e − 2,±0.382 × 1e − 2, 0)
and parameters (a) (a, b, d, c) = (1, 3,−10, 0.05), (b) (a, b, d, c) = (1, 1,−2, 5.2). Both figures show that
system (1.13) has two heteroclinic orbits to E0 and E5,6 when (a, b, c, d) ∈ W211 ∪W214.
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5. Conclusion

In this paper, we have revisited two so-called simplest 3D autonomous chaotic sys-
tems, i.e. system (20) and system (21) in [72, p. 447], which are able to generate
four-wing butterfly-shaped chaotic attractors. By some linear transformations, we
find, system (20) with c1 > 0 and f1 < 0 is topologically equivalent to system (21)
with c2 > 0 and f2 > 0. Therefore, the two systems can be only reduced into
one system (1.13) in this paper. Hence, we also point out that the comparison
between system (20) and system (21) is unnecessary through numerical simulations
illustrated in [72, Figs. 3–12, pp. 452–456].

After some other problems in [72] are pointed out and completely solved, some
interesting and important dynamical behaviors of system (1.13), such as the Hopf
bifurcation, four different kinds of non-isolated equilibria, the existence of different
families of infinitely many degenerate heteroclinic cycles and the existence of hete-
roclinic orbits, etc., which are not studied in any known literature, are formulated
in this paper.

By numerical simulations, we find that there exist two-wing, four-wing butterfly-
shaped chaotic attractors that can be bifurcated from distinct singularly degenerate
heteroclinic cycles, and four heteroclinic orbits to E0, E3,4 and E5,6. It is worthwhile
to further theoretically explore the mechanism for the occurrence of such chaotic
attractors in the future. Hence, all of these complex dynamics demonstrate that
system (1.13) deserves further considering.

It is hoped that our work will shed some lights on revealing the true geometrical
structure of the amazing original Lorenz attractor, even the forming mechanism of
chaos.
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