For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 4, 2017, Pages 1275-1284                                                                DOI:10.11948/2017078
Symmetry analysis, conservation laws of a time fractional fifth-order Sawada-Kotera equation
Zheng Xiao,Long Wei
Keywords:S-K equation, Lie symmetry, conservation laws.
Abstract:
      In this paper, we intend to study the symmetry properties and conservation laws of a time fractional fifth-order Sawada-Kotera (S-K) equation with Riemann-Liouville derivative. Applying the well-known Lie symmetry method, we analysis the symmetry properties of the equation. Based on this, we find that the S-K equation can be reduced to a fractional ordinary differential equation with Erdelyi-Kober derivative by the similarity variable and transformation. Furthermore, we construct some conservation laws for the S-K equation using the idea in the Ibragimov theorem on conservation laws and the fractional generalization of the Noether operators.
PDF      Download reader