Volume 5, Number 3, 2015, Pages 527-533 DOI:10.11948/2015038 |
Hamiltonian Systems with Positive Topological Entropy and Conjugate Points |
Fei Liu,Zhiyu Wang,Fang Wang |
Keywords:Hamiltonian systems |
Abstract: |
In this article, we consider the geodesic flows induced by the natural Hamiltonian systems $H(x,p)=\frac{1}{2}g^{ij}(x) p_{i}p_{j} + V(x) $ defined on a smooth Riemannian manifold$(M = \mathbb{S}^{1} \times N, g)$, where $\mathbb {S}^{1}$ is the one dimensional torus, N is a compact manifold, g is the Riemannian metric on M and V is a potential function satisfying $V \leq 0$. We prove that under suitable conditions, if the fundamental group $\pi_{1}(N)$ has sub-exponential growth rate, then the Riemannian manifold M with the Jacobi metric $(h-V)g$, i.e., $(M, (h-V)g)$, is a manifold with conjugate points for all h with $0 < h <\delta$, where $\delta$ is a small number. |
PDF Download reader
|
|
|
|