All Issues

Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 5, Number 3, 2015, Pages 527-533                                                                DOI:10.11948/2015038
Hamiltonian Systems with Positive Topological Entropy and Conjugate Points
Fei Liu,Zhiyu Wang,Fang Wang
Keywords:Hamiltonian systems
      In this article, we consider the geodesic flows induced by the natural Hamiltonian systems $H(x,p)=\frac{1}{2}g^{ij}(x) p_{i}p_{j} + V(x) $ defined on a smooth Riemannian manifold$(M = \mathbb{S}^{1} \times N, g)$, where $\mathbb {S}^{1}$ is the one dimensional torus, N is a compact manifold, g is the Riemannian metric on M and V is a potential function satisfying $V \leq 0$. We prove that under suitable conditions, if the fundamental group $\pi_{1}(N)$ has sub-exponential growth rate, then the Riemannian manifold M with the Jacobi metric $(h-V)g$, i.e., $(M, (h-V)g)$, is a manifold with conjugate points for all h with $0 < h <\delta$, where $\delta$ is a small number.
PDF      Download reader