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HAMILTONIAN SYSTEMS WITH POSITIVE
TOPOLOGICAL ENTROPY AND CONJUGATE

POINTS∗

Fei Liu1, Zhiyu Wang1 and Fang Wang2,†

Abstract In this article, we consider the geodesic flows induced by the nat-
ural Hamiltonian systems H(x, p) = 1

2
gij(x)pipj + V (x) defined on a smooth

Riemannian manifold (M = S1×N, g), where S1 is the one dimensional torus,
N is a compact manifold, g is the Riemannian metric on M and V is a po-
tential function satisfying V ≤ 0. We prove that under suitable conditions,
if the fundamental group π1(N) has sub-exponential growth rate, then the
Riemannian manifold M with the Jacobi metric (h−V )g, i.e., (M, (h−V )g),
is a manifold with conjugate points for all h with 0 < h < δ, where δ is a
small number.
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1. Introduction

Let M be an n-dimensional smooth (here “smooth” means C∞) complete manifold
with the Riemannian metric g, and γ(x,v)(t) be the unique geodesics starting from
x ∈ M with an initial tangent vector v ∈ TxM . The geodesic flow ϕt on the tangent
bundle TM is defined as:

ϕt : TM → TM, (x, v) 7→ (γ(x,v)(t), γ̇(x,v)(t)).

Let SM be the unit tangent bundle on M . Then ϕt leaves SM invariant. Usually
when we say geodesic flows we mean geodesic flows on the unit tangent bundle.

It is well-known that, in local coordinates, the geodesic flow can be generated
by the Euler-Lagrange Equation

d

dt

∂L(x, ẋ)

∂ẋ
=

∂L(x, ẋ)

∂x
, (1.1)
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with the Lagrangian L(x, v) = gx(v, v), where g is the Riemannian metric. By the
Legendre transformation, one can consider the geodesic flows as Hamiltonian flows
on the cotangent bundle T ∗M with the Hamiltonian

H(x, p) =
1

2

n∑
i,j=1

gij(x)pipj , (1.2)

where (gij) is the inverse matrix of the Riemannian metric g = (gij). More generally,
we consider the natural Hamiltonian system with the Hamiltonian

H(x, p) =
1

2

n∑
i,j=1

gij(x)pipj + V (x), (1.3)

where V (x) is a potential function defined on M . For h > max
x∈M

{V (x)}, the Mau-

pertuis principle shows that the Hamiltonian flows restricted to the iso-energy level
{H(x, p) = h} coincide with (up to a re-parametrization) the geodesic flows of M
with the Jacobi metric g̃ = (g̃ij(x)) = ((h − V (x))gij(x)) = (h − V )g. For more
details, see [1].

The topological entropy is an important invariance which describes the complex-
ity of the dynamical systems. In this paper, we use htop(g) to denote the topological
entropy of the geodesic flow generated by the Riemannian metric g. It is well-known
that the topological entropy of a geodesic flow is strongly related to the geometry
and topology of the Riemannian manifold with a metric g where the geodesic flow
is defined. In 1971, Dinaburg proved that, if the fundamental group of M has
exponential growth then htop(g) > 0 (cf. [5]). Eight years later, in [8], Manning
established the following inequality:

htop(g) ≥ h(M, g),

where h(M, g) denotes the volume entropy of the Riemannian manifold (M, g).
When (M, g) has non-positive curvature, the equality holds. Furthermore, Freire-
Mañé (cf. [6]) proved that the equality holds for the manifold without conjugate
points when the Riemannian metric is Hölder C3. From the definition we know
that h(M, g) > 0 if and only if the volume has positively exponential growth rate
on the Riemannian universal covering manifold of (M, g).

It is natural to ask the following question: if htop(g) > 0, what can we say about
the geometry and topology of the manifold on which the geodesic flow is defined? In
this paper, we will give a partial answer to this problem. More precisely, using the
Maupertuis’ principle we study the geodesic flows induced by natural Hamiltonian
systems. We will show that, under some conditions, which will be discussed in the
next section, if the fundamental group π1(N) has sub-exponential growth rate, then
the Riemannian manifold M with the Jacobi metric (h − V )g, is a manifold with
conjugate points for all h with 0 < h < δ, for some small number δ.

2. Assumptions and Main Results

Suppose N is a smooth compact manifold, S1 is the unite circle. Let M = S1 ×N ,
and g be a smooth Riemannian metric on M . Let us consider the Hamiltonian sys-
tem whose Hamiltonian function is defined in 1.3, with V (x) ≤ 0. This Hamiltonian
system is often called the natural Hamiltonian system.
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In [2], Bolotin and Rabinowitz studied the chaotic properties of a class of Hamil-
tonian systems, which is called the reversible Hamiltonian systems. The natural
Hamiltonian systems we are considering in this paper is a special case of the re-
versible Hamiltonian systems. The Riemannian manifold M in [2] is also a product
one, saying (M = S1 ×N, g), where S1 is a smooth circle, N is a smooth compact
manifold and g is a smooth Riemannian metric on M . By using a variational meth-
ods, they discovered the chaotic dynamics on the energy levels with small energies.
To obtain their results, Bolotin and Rabinowitz imposed six conditions on H,M
and V . The first two of which are automatically satisfied by the natural Hamiltoni-
an systems. Thus we only impose the last four conditions in this paper, which are
(H1) to (H4) in the following.

We write S1 = R/2Z. Put q = (x, y), where x ∈ S1 and y ∈ N , p = (px, py),
where px ∈ R and py ∈ T ∗

yN . Let I : M → M be the involution I(x, y) =
(−x, y). The fixed point set of I has two components, namely N0 = {0} × N and
N1 = {1} × N . The involution I defines the involution I∗ : T ∗M → T ∗M by
I∗(px, py, x, y) = (−px, py,−x, y). Suppose that

(H1) V has a unique maximum point q0 ∈ M , and it is non-degenerate.

(H2) H is invariant under the involution I∗.

By the uniqueness of maximum point and (H2), it’s easy to see that q0 belongs to
the set of fixed points of I. It can be assumed that q0 ∈ N0. The Hamiltonian system
has an invariant symplectic manifold Q = T ∗N0 which contains the equilibrium z0.
Let ±λ1 be the eigenvalues corresponding to the eigenvectors transversal to Tz0Q,
and the exponents ±λ2, ...,±λn correspond to the eigenvectors in Tz0Q. Suppose
that

(H3) λ1 < λk for k ≥ 2.

(H4) d(N0, N1) < d(q0, N1), where d is the distance induced by the Riemannian
metric.

For convenience, we call the four conditions stated above the BR conditions and
call the natural Hamiltonian systems satisfying the BR conditions BR-type natural
Hamiltonian systems. Bolotin and Rabinowitz [2] proved the following result.

Theorem 2.1 (Bolotin and Rabinowitz). For the BR-type natural Hamiltonian
system H on (M = S1 × N, g) as stated in (1.3) with V (x) ≤ 0, there exists a
constant δ > 0, such that the system has positive topological entropy on each energy
level {H(x, p) = h} with 0 < h < δ.

Remark 2.1. In fact, Bolotin and Rabinowitz proved the above theorem for all
h satisfying 0 < |h| < δ. But in this paper, we only need the case 0 < h < δ.
Moreover, by this theorem, we know that the BR-type natural Hamiltonian systems
with V (x) ≤ 0 always have positive topological entropy.

In this paper, we extended the above result and consider the relation between
the growth rate of the fundamental group of N and the existence of the conjugate
points. Our main results are the following.

Theorem 2.2 (Main Theorem). Let (M = S1 ×N, g) and δ > 0 be the ones stated
above. Suppose that H is a BR-type natural Hamiltonian defined on (M, g) given
in (1.3), with V (x) ≤ 0 on M , then If the fundamental group π1(N) of N has a
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sub-exponential growth rate, then for 0 < h < δ, (M, (h − V )g) is a manifold with
conjugate points.

The definitions of the growth rate of a group and the conjugate point on a
Riemannian manifold with be given in the next section. We remark that: the
following result is an easy consequence of Theorem 2.2.

Corollary 2.1. Assume that the conditions given in Theorem 2.2 hold. If N is
simply connected, or π1(N) is finite, or π1(N) has polynomial growth rate, equiv-
alently the volume growth rate of the Riemannian universal covering of N is sub-
exponential, then the Riemannian manifold (M, (h − V )g) is a manifold with con-
jugate points.

3. Proof of the Main Theorem

Before proving our results, we need to introduce the concepts of growth rate (cf. [7])
and conjugate points (cf. [4]).

Let Γ be a finitely generated group with a given set of generators {γ1, ..., γk}.
For each element γ ∈ Γ, we associate it a norm, saying ∥γ∥, to be the minimal
length of γ, as a word in the given set of generators {γ1, ..., γk}. Then for the given
generators above, we denote by B(r) ⊂ Γ, r ≥ 0, the ball of radius r centered at
the identity element e, and denote by ♯B(r) the number of elements in B(r).

Definition 2.1. We say that Γ has exponential growth if

limr→+∞
ln ♯B(r)

r
> 0.

Otherwise, we refer Γ to have sub-exponential growth rate.

We say that Γ has polynomial growth rate if there are two positive numbers d
and C such that for all balls B(r) ⊆ Γ with r ≥ 1, one has

♯B(r) ≤ Crd.

Obviously, the polynomial growth rate is a special case of the sub-exponential
growth rate.

Let γ be a geodesic of (M, g), two points x = γ(t1) and y = γ(t2) are called
conjugate if there exists a non-identically zero Jacobi field Y along γ such that
Y (t1) = 0 = Y (t2). We say that the manifold M without conjugate points if on
each geodesic no two points are conjugate. It’s easy to see that if a manifold has
non-positive curvature, then it has no conjugate points.

Next, we give two lemmas below, which is useful in our proof of theorem 2.2.
The first lemma shows the relations between the growth rate of the fundamental
group of N and the fundamental group of M = S1 ×N .

Lemma 2.1. If both the fundamental groups of manifolds N1 and N2 have sub-
exponential growth rates, then the fundamental group of the product manifold M =
N1 ×N2 also has a sub-exponential growth rate.

Proof. From the properties of the fundamental groups on product manifolds, it
follows that π1(M) = π1(N1 × N2) is isomorphic to π1(N1) × π1(N2), denoted
by ≈ the isomorphism between groups, so π1(M) ≈ π1(N1) × π1(N2). Choose
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{α1, ..., αk} as the generators of π1(N1) and β1, ..., βl as the generator of π1(N2).
Then {α1, ..., αk, β1, ..., βl} are the generators of π1(M) = π1(N1 ×N2). Moreover
it follows from the property of the direct product of groups that αi commutes with
each βj for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Let BT (r) be the ball in π1(T ) of radius r centered at the identity element e,
where T = M,N1, N2. By some easy calculations, we can show that,

♯BM (r) ≤ ♯BN1(r) + ♯BN2(r) +

[r]∑
i=0

♯BN1(i)×BN2(r − i)

≤ ♯BN1(r) + ♯BN2(r) + ♯BN1(r)× ♯BN2(r)× ([r] + 1).

Where [r] denotes the integral part of r. Hence we have

limr→∞
ln ♯BM (r)

r

≤limr→∞
ln((♯BN1(r) + ♯BN2(r) + ♯BN1(r)× ♯BN2(r)× ([r] + 1))

r

≤limr→∞
ln((♯BN1(r) + 1)× (♯BN2(r) + 1)× ([r] + 2))

r
= 0.

In the last equality, we have shown the fact that π1(M) has a sub-exponential
growth rate. This proves the lemma.

The next lemma gives a sufficient and necessary condition for the sub-exponential
growth of π1(M). This is a geometric condition. This condition is crucial in the
proof of our main theorem.

Lemma 2.2. The fundamental group of a compact Riemannian manifold M has
sub-exponential growth if and only if its corresponding Riemannian universal cov-
ering manifold, denoted by M̃ , has sub-exponential volume growth.

Proof. In [7], Gromov got the following inequality:

Vol(B(g,y)(cr + c)) ≥ ♯BM (r) ≥ Vol(B(g,y)(c
−1r)), (2.1)

where c is a positive constant and Vol(B(g,y)(r)) denotes the Riemannian volume

of the ball of radius r centered at point y ∈ M̃ .

We note that Manning (cf. [8]) had shown that limr→∞
ln Vol(B(g,y)(r))

r exists, no
less than 0 and independent of y. Using the inequality (2.1), it’s easy to see that

limr→∞
ln ♯BM (r)

r
= 0 if and only if lim

r→∞

ln Vol(B(g,y)(r))

r
= 0.

This proves the lemma.
Now we are ready to prove Theorem 2.2:

Proof. By contradiction we suppose that (M = S1 ×N, (h − V )g) is a manifold
without conjugate points, then by [6], we have that

htop((h− V )g) = lim
r→∞

ln Vol(B((h−V )g,y)(r))

r
= h(M, (h− V )g). (2.2)

As mentioned in lemma 2.2, the limit in (2.2) exists and does not depend on the
choice of the point y, we call the limit the volume entropy and denote it by h(M, (h−
V )g), (cf. [8]).
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Since π1(S1) ≈ Z, it has polynomial growth rate (♯BS1(r) = r + 1), so it al-
so has sub-exponential growth rate. By lemma 2.1, π1(M) has sub-exponential
growth rate. Following by lemma 2.2, we obtain that Vol(B((h−V )g,y)(r)) has sub-
exponential growth rate, thus h(M, (h− V )g) = 0.

By the Maupertuis principle(cf. [1]), we know that the Hamiltonian flow of H
restricted to the energy level

Qh = {H(x, p) = h}, 0 < h < δ,

coincide with (up to a re-parametrization) the geodesic flows of (M = S1 ×N, (h−
V )g) on the energy level

Q̃h = {H̃(x, p) :=
1

2(h− V )
gijpipj = 1}, 0 < h < δ.

Since the topological entropy of the Hamiltonian flow on Qh is positive, we get that
the topological entropy of the geodesic flow of (M, (h− V )g) on Q̃h is positive, i.e,
htop((h−V )g) > 0. By (2.2), this contradicts to the result that h(M, (h−V )g) = 0.
So, this contradiction implies that (M, (h−V )g) is a manifold with conjugate points.

We complete the proof of the theorem.

3. Further Discussion

Another approach characterizing the topological entropy of the geodesic flows via
the geometry and topology of the manifold was suggested by Paternain in [9]. His
idea is to find topological obstructions to the integrability of geodesic flows based on
topological entropy. The main progress along this approach was made by Bolsinov
and Taimanov (cf. [3]). They discovered a smoothly integrable geodesic flow which
has positive topological entropy. But it is still an open problem that whether a real
analytically integrable geodesic flow defined on a Riemannian manifold of dimension
larger than 2 has only zero topological entropy. We give the following conjecture.

Conjecture 3.1. BR-type analytically natural Hamiltonian systems cannot be an-
alytically integrable.
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