For EDITORS

For READERS

All Issues

Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 5, Number 3, 2015, Pages 313-328                                                                DOI:10.11948/2015028
A global superconvergent $L^{\infty}$-error estimate of mixed finite element methods for semilinear elliptic optimal control problems
Li Li
Keywords:Semilinear elliptic equations;optimal control problems;superconvergence;mixed finite element methods
Abstract:
      In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and costate are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.
PDF      Download reader