For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 5, Number 1, 2015, Pages 141-145                                                                DOI:10.11948/2015012
The Hilbert number of a class of differential equations
Jaume Llibre,Ammar Makhlouf
Keywords:Periodic orbit, averaging theory, trigonometric polynomial, Hilbert number.
Abstract:
      The notion of Hilbert number from polynomial differential systems in the plane of degree $n$ can be extended to the differential equations of the form \[\dfrac{dr}{d\theta}=\dfrac{a(\theta)}{\displaystyle \sum_{j=0}^{n}a_{j}(\theta)r^{j}} \eqno(*)\] defined in the region of the cylinder $(\tt,r)\in \Ss^1\times \R$ where the denominator of $(*)$ does not vanish. Here $a, a_0, a_1, \ldots, a_n$ are analytic $2\pi$--periodic functions, and the Hilbert number $\HHH(n)$ is the supremum of the number of limit cycles that any differential equation $(*)$ on the cylinder of degree $n$ in the variable $r$ can have. We prove that $\HHH(n)= \infty$ for all $n\ge 1$.
PDF      Download reader