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THE HILBERT NUMBER OF A CLASS OF
DIFFERENTIAL EQUATIONS∗

Jaume Llibre1,† and Ammar Makhlouf2

Abstract The notion of Hilbert number from polynomial differential systems
in the plane of degree n can be extended to the differential equations of the
form

dr

dθ
=

a(θ)
n∑

j=0

aj(θ)r
j

(∗)

defined in the region of the cylinder (θ, r) ∈ S1 ×R where the denominator of
(∗) does not vanish. Here a, a0, a1, . . . , an are analytic 2π–periodic functions,
and the Hilbert number H(n) is the supremum of the number of limit cycles
that any differential equation (∗) on the cylinder of degree n in the variable r
can have. We prove that H(n) = ∞ for all n ≥ 1.
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1. Introduction

In the article [6] Lins Neto studied the following problem posed by Charles Pugh.

Problem 1. Let a0, a1, . . . , an : S1 → R be continuous 2π–periodic functions and
consider the differential equation

dr

dθ
= a0(θ) + a1(θ)r + . . .+ an(θ)r

n, (1.1)

on the cylinder (θ, r) ∈ S1 ×R. Then the problem is to know the number of isolated
periodic solutions (i.e. limit cycles) of the differential equation (1.1) in function of
n.

Problem 1 was motivated by the Hilbert’s 16–th problem (see for instance [3–
5]), because some polynomial differential systems in the plane can be reduced to
equations (1.1) as all the polynomial differential systems of degree 2 (see for instance
the proposition of [6]), all polynomial differential systems with the linear center
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ẋ = −y, ẏ = x with nonlinearities given by homogeneous polynomials of degree n
for all positive integer n (see for instance [7]), all polynomial differential systems
such that in polar coordinates (r, θ) have θ̇ = 1, ... See also [1] for more details on
the differential equations (1.1).

For polynomial differential systems in the plane it is defined the Hilbert number
H(n), i.e. the supremum of the number of limit cycles that a polynomial differential
system in the plane of degree n can have. For the moment it is unknown if the
Hilbert number is finite or infinite when n > 1. We can extend the notion of
Hilbert number to the differential equations (1.1) defined on the cylinder as follows.
The Hilbert number H(n) is the supremum of the number of limit cycles that a
differential equation (1.1) on the cylinder of degree n in the variable r can have.

The Hilbert number for the Problem 1 has the following answer. For the differ-
ential equations of the form

(i)
dr

dθ
= a0(θ) + a1(θ)r (periodic linear differential equations) it is known that

H(1) = 1.

(ii)
dr

dθ
= a0(θ)+a1(θ)r+a2(θ)r

2 (periodic Riccati differential equations) we have

that H(2) = 2, see for instance Theorem 1 of [6].

(iii)
dr

dθ
= a0(θ) + a1(θ)r+ a2(θ)r

2 + a3(θ)r
3 (periodic Abel differential equations)

can have k limit cycles for all positive k, see the example of section 3 of [6].
So H(3) = ∞.

(iv)
dr

dθ
= a0(θ) + a1(θ)r + ... + as(θ)r

s can have k limit cycles for all positive k.

We have the same conclusion than for the periodic Abel differential equation
and the proof follows easily modifying the proof of (iii). Hence H(n) = ∞ for
n > 3.

In this paper we consider the following problem:

Problem 2. Let a, a0, a1, . . . , an : S1 → R be continuous 2π–periodic functions and
consider the differential equation

dr

dθ
=

a(θ)

a0(θ) + a1(θ)r + . . .+ an(θ)rn
, (1.2)

on the region of the cylinder (θ, r) ∈ S1×R where the denominator of (1.2) does not
vanish. Then the problem is to know the number of limit cycles of the differential
equation (1.2) in function of n.

Again we can extend the notion of Hilbert number to the differential equations
(1.2) defined on the cylinder as follows. The Hilbert number H(n) is the supremum
of the number of limit cycles that a differential equation (1.2) on the cylinder of
degree n in the variable r can have.

The main result of this paper is to compute the Hilbert number for the Problem
2.

Theorem 1.1. For all positive integer k there are analytic differential equations
(1.2) with n = 1 having at least k limit cycles. So H(1) = ∞.
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Theorem 1.1 is proved in section 3 using the averaging theory of first order for
studying the periodic solutions. We present the results of this theory that we need
in section 2.

A corollary of Theorem 1.1 is the following.

Corollary 1.1. For all positive integers n and k there are analytic differential
equations (1.2) having at least k limit cycles. So H(n) = ∞ for n > 1.

Corollary 1.1 is also proved in section 3.

2. The averaging theory

Now we summarize the basic results from averaging theory that we need for proving
the results of this paper. The following result provides a first order approximation
for the periodic solutions of a periodic differential equation.

We deal with the differential equation

ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0 (2.1)

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Suppose that the function-
s F1(t,x) and F2(t,x, ε) are T−periodic in t. Then consider in D the averaged
differential equation

ẏ = εf(y), y(0) = x0, (2.2)

where

f(y) =
1

T

∫ T

0

F1(t,y)dt.

The next result shows that under convenient conditions, the equilibrium solutions
of the averaged equation correspond with T−periodic solutions of the differential
equation (2.1).

Theorem 2.1. Consider the two differential equations (2.1) and (2.2). Assume:

(i) the functions F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x
2, F2 and its Ja-

cobian ∂F2/∂x are continuous and bounded by a constant independent of ε in
the sets [0,∞)×D and ε ∈ (0, ε0].

(ii) the functions F1 and F2 are T−periodic in t (T independent of ε).

Then the next statements hold.

(a) If p is an equilibrium point of the averaged equation (2.2) and

det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there is a T−periodic solution φ(t, ε) of equation (2.1) such that φ(0, ε) →
p as ε → 0.

(b) The kind of stability or instability of the limit cycle φ(t, ε) is given by the
kind of stability or instability of the equilibrium point p of the averaged system
(2.2). Indeed, the singular point p has the stability behavior of the Poincaré
map associated to the limit cycle φ(t, ε).

For a proof of Theorem 2.1 see Theorems 11.5 and 11.6 of Verhulst [8].
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3. Proof of Theorem 1.1

Consider the subclass of differential equations (1.2) with n = 1 given by

dr

dθ
= ε

a(θ)

a0(θ) + a1(θ)r
, (3.1)

where ε is a small parameter, and

a(θ) =
k∑

j=0

αj cos(jθ), a0(θ) = 1, and a1(θ) = cos θ, (3.2)

being α0, α1, . . . , αk arbitrary constants.
Clearly the differential equation (3.1) is defined in the open cylinder {(θ, r) ∈

S1 × (0, 1)}. This differential equation satisfies the assumptions of Theorem 2.1, so
we shall apply this theorem to it.

The averaged differential equation (2.2) corresponding to equation (3.1) is

ṙ = εf(r), (3.3)

where

f(r) =
k∑

j=0

αj
1

2π

∫ 2π

0

cos(jθ)

1 + r cos θ
dθ =

k∑
j=0

αjfj(r).

The function fj(r) for r ∈ (0, 1) can be computed, and we get

fj(r) =
1√

1− r2

(√
1− r2 − 1

r

)j

. (3.4)

In fact this integral was computed in the formula 3.613 of [2]. Therefore

f(r) =
k∑

j=0

αjfj(r) =
k∑

j=0

αj
1√

1− r2

(√
1− r2 − 1

r

)j

.

The equilibrium points of the averaged equation (3.3) are the zeros of the func-
tion f(r).

Let I be an interval of R, and let f0, f1, . . . , fk : I → R be C1 functions linearly
independent, i.e. if

∑k
j=0 βjfj(r) = 0 then β0 = β1 = . . . = βk = 0. The following

result is well known, for a proof see for instance the Proposition 1 of the Appendix
A of [7].

Proposition 3.1. If the functions f0, f1, . . . , fk : I → R are linearly independent,
then there exist α0, α1, . . . , αk ∈ R and r1, . . . , rk ∈ I such that for every rℓ with
ℓ ∈ {1, . . . , k} we have that

k∑
j=0

αjfj(rℓ) = 0.

Clearly our functions fj(r) for j = 0, 1, . . . , k given in (3.4) are linearly inde-
pendent. So we can apply Proposition 3.1 to them, and consequently we know
that there are values of α0, α1, . . . , αk ∈ R and values r1, . . . , rk ∈ (0, 1) such that
f(rℓ) = 0 for ℓ = 1, . . . , k, being the rℓ simple zeros of f(r). Hence, by Theorem 2.1,
since the averaged equation (3.3) has k simple zeros r1, . . . , rk ∈ (0, 1) we conclude
that the differential equation (3.1) has k limit cycles. This completes the proof of
Theorem 1.1.
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4. Proof of Corollary 1.1

We consider for a given integer n > 1 the differential equation

dr

dθ
= ε

a(θ)

a0(θ) + a1(θ)r + ε
(
a2(θ)r2 + . . .+ an(θ)rn

) ,
= ε

a(θ)

a0(θ) + a1(θ)r
+O(ε2).

(4.1)

Taking again the expressions (3.2) for the functions a(θ), a0(θ) and a1(θ), we
can apply Theorem 2.1 to the differential equation (4.1) as we have done for the
differential equation (3.1), and we also obtain that the differential equation (4.1)
has k limit cycles. This completes the proof of the Corollary 1.1.
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