For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 4, Number 4, 2014, Pages 389-403                                                                DOI:10.11948/2014022
The study of Heat and Mass Transfer in a Visco elastic fluid due to a continuous stretching surface using Homotopy Analysis Method
Rajeswari Seshadri,Shankar Rao Munjam
Keywords:Two-dimensional flow
Abstract:
      In this paper, an approximate analytical solution is derived for the flow velocity and temperature due to the laminar, two-dimensional flow of non-Newtonian incompressible visco elastic fluid due to a continuous stretching surface. The surface is stretched with a velocity proportional to the distance $x$ along the surface. The surface is assumed to have either power-law heat flux or power-law temperature distribution. The presence of source/sink and the effect of uniform suction and injection on the flow are considered for analysis. An approximate analytical solution has been obtained using Homotopy Analysis Method(HAM) for various values of visco elastic parameter, suction and injection rates. Optimal values of the convergence control parameters are computed for the flow variables. It was found that the computational time required for averaged residual error calculation is very very small compared to the computation time of exact squared residual errors. The effect of mass transfer parameter, visco elastic parameter, source/sink parameter and the power law index on flow variables such as velocity, temperature profiles, shear stress, heat and mass transfer rates are discussed.
PDF      Download reader