For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 4, Number 4, 2014, Pages 383-388                                                                DOI:10.11948/2014021
On a class of singular p-Laplacian semipositone problems with sign-changing weights
S.H. Rasouli,Z. Firouzjahi
Keywords:Positive solutions
Abstract:
      We study existence of positive weak solution for a class of $p$-Laplacian problem $$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda g(x)[f(u)-\frac{1}{u^{\alpha}}], & x\in \Omega,\\u= 0 , & x\in\partial \Omega,\end{array\right.$$ where $\lambda$ is a positive parameter and $\alpha\in(0,1),$ $\Omega $ is a bounded domain in $ R^{N}$ for $(N > 1)$ with smooth boundary, $\Delta_{p}u = div (|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator for $( p > 2),$ $g(x)$ is $C^{1}$ sign-changing function such that maybe negative near the boundary and be positive in the interior and $f$ is $C^{1}$ nondecreasing function $\lim_{s\to\infty}\frac{f(s)}{s^{p-1}}=0.$ We discuss the existence of positive weak solution when $f$ and $g$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.
PDF      Download reader