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ON A CLASS OF SINGULAR P-LAPLACIAN
SEMIPOSITONE PROBLEMS WITH
SIGN-CHANGING WEIGHT

S.H. Rasouli’ and Z. Firouzjahi'

Abstract We study existence of positive weak solution for a class of p-
Laplacian problem

—Apu=Ag(@)[f(u) - 5], z€Q,
u=0, x € 09,

where X is a positive parameter and a € (0,1), 2 is a bounded domain in
RY for (N > 1) with smooth boundary, A,u = div(|Vu|P~2Vu) is the p-
Laplacian operator for (p > 2), g(x) is C' sign-changing function such that
maybe negative near the boundary and be positive in the interior and f is C*
nondecreasing function limg_; s gfp(f)l = 0. We discuss the existence of positive
weak solution when f and g satiksfy certain additional conditions. We use the
method of sub-supersolution to establish our result.
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1. Introduction

We consider the singular following problem

—Apu=Ag(x)[f(u) — 5], z€Q,
{ u =0, x € 09, (1.1)

where \ is a positive parameter and o € (0, 1), 2 is a bounded domain in RN for
(N > 1) with smooth boundary and Apu = div(|Vu[P~2Vu) is the p-Laplacian
operator for (p > 2), g(x) is C* sign-changing function that maybe negative near
the boundary and be positive in the interior and f is C!' nondecreasing function.

Problems involving the p-Laplacian arise from many branches of pure mathemat-
ics as in the theory of quasiregular and quasiconformal mapping (see [1]) as well as
from various problems in mathematical physics notably the flow of non-Newtonian
fluids.

Let f(y) = f(y) — y% Then lim, o f(y) = —o00, and hence we refer to (1.1) as
an infinite semipositone problem (see [4-6,8]). See [6] where the authors discussed
the problem (1.1) when a = 1 and p = 2. In [5], the authors extended the study
of [6], to the case when p > 1. Here we focus on further extending the study in [5]
to the problem (1.1). In fact, we study the existence of positive solution to the

fthe corresponding author. Email address:s.h.rasouli@mit.ac.ir (S.H. Rasouli)
1Department of Mathematics, Faculty of Basic Sciences, Babol University of
Technology, Babol, Iran



384 S. Rasouli & Z. Firouzjahi

problem (1.1) with sign-changing weight function g(z). Due to the weight function,
the extensions are challenging and nontrivial. Our approach is based on the method
of sub-super solutions (see [2,3,7]).

To precisely state our existence result, we consider the eigenvalue problem

A= NP6, zeQ,
{ 60, v € 090, (12)

Let ¢ be the eigenfunction corresponding to the first eigenvalue A; of (1.2) such
that ¢(x) > 0in Q, and ||¢||ec = 1. Let m, 0, > 0 be such that

o< ¢p<1, €0 —Qs, (1.3)
a —_
(1- ]Tp—i—CVHV(mp >m, x € Qs, (1.4)

where Qs = {x € Q|d(z,0) < §}. This is possible since |[V¢| # 0 on 9Q while
¢ = 0 on 9. We will also consider the unique solutione € VVO1 P(Q) of the boundary
value problem

-Ape=1, z€Q,
e=0, x € 09,

to discuss our existence result. It is known that e > 0 in 2 and g—z < 0 on 09.

Here we assume that the weight function g(z) takes negative values in Qs, but
require g(x) be strictly positive in 2 — Q5. To be precise we assume that there exist
positive constants a, b such that g(x) > —a, on Q5 and g(x) > b on Q — Q.

2. Existence result

In this section, we shall establish our existence result via the method of sub-super
solution. A function v is said to be a subsolution of (1.1), if it is in W1P(Q)NCO(Q)
such that ¥ = 0 on 92 and

[ ver Ve Sude < [ g@liw) - Slwds, Ywe W,
Q Q /¢

where W = {w € C3°() |w > 0,2 € Q} (see [8]). -
A function z is said supersolution of (1.1), if it is in W1?(Q) N C%(Q) such that
z = o0 on 0f), and

/ |Vz|P~2Vz.Vwdz > / Ag(@)[f(z) — Zia]wdx, Yw e W.
Q o

Then the following result holds :

Lemma 2.1. (See [3]). If there exist a subsolution ¢ and supersolution z such that
¥ <z in Q then (1.1) has a weak solution u such that ¢ < u < z.
We make the following assumptions :

(H1) f:(0,00) — (0,00) is C* nondecreasing function.
(H2) lim,_, . &) = 0.

sp—1
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(H3) Suppose that there exists € > 0 such that

1
. er—1 (p—1+a)o p a
[ > ,
(i) f( - ) (€ﬁo(p_1+a))

fii) SNz o me

ap* af(erT)’
(iii) D > —me,
Mo ap(er)
where
eﬁ(p—1+a)a P o
N:f( )_( 1 ) .
D er—1o(p—1+a)

We are now ready to give our existence result.

Theorem 2.1. Let (H1) — (H3) hold. Then there exists a positive weak solution
of (1.1) for every X € [A.(€), A*(¢)], where

me

N = —— and A, = max ¢
af(er=T)

TN -1+ a) e
ap® " Nb [

Remark 2.1. Note that (H3) implies A, < A*.
22
Example 2.1. Let B > 0 and f(x) = e, Then, f(z) > 0 for x > 0 and f is

nondecreasing and

Bax?
Btz
lim f(x) = lim e

z—o0 xP—1 z—o0 xP—1

We can choose € > 0 such that f satisfy (H3).

Proof of the Theorem 2.1. First we construct a positive subsolution of (1.1).
For this, we let ¢ = ;7—1% €T d)pfﬁa. Let w € W. Since Vy = €T d)viia Vo,
then a calculation shows that
/ |Vep|P~2 Vep . Vw dx
Q

(p=1)(A=c)

:G/ ¢ 1ve  |Vo|P 2V .Vwdr
Q
:E/ |V(b\p_2 V¢ |:V(¢1_p—alz-)%—a w) — V(¢1_p—aﬁ)w:| dx
Q
= / VoIP~* Vg V(¢! 7T w)de — ¢ / VP2 Ve .V(g' 71 ) wda
Q Q
:6/ )\1¢7p47o§lﬁ>01 ¢P wdxr — 6/ (1 _ L)d)*% |v¢|p wdx
Q Q p—1l+a
__ap ap __ap
= P p—ita — (] — ——— —ita D .
e/ﬂ[)qd) o —( p—1+a)¢ = |Vo|P] wda

First we consider the case when z € Q5. We have (1 — ira)|IVolP = m and
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g(z) > —a. Hence since A < \* = —5— we have
af(e7T)
(1 = e TR [Vl < e
< —me
2.1
< —Aaf(erT) 2
< _)\af(meﬁfbﬁ),
p
a+p;l N
and since A > )\, = & );L;)(ffpra) , we have
€p TIPS egT T Ay g
< Aap®
er-T(p—1+a) (2.2)
Aa

T (gt

By combining (2.1) and (2.2) we see that

R P L N
-1 1 P 1
g@)[f(E— et gt I

(P—l%ep%lgb,ﬂ%)a

On the other hand, on  — Qs, we have g(x) > b and o < ¢p—f+a < 1. Thus for

A> A\ = %,We have

T (1 %P -
€p r AP — (1 p—l+a>¢ |Va[P)
e\ irE
N
<AbN
—14+a, _1_ 1

[f (" )oerT — ]

O ()

-1 1 p 1
S)\g(gj)[f(ueﬁ(bpiua) B ((p*1+a) 1¢P)O‘}

L T )ep—Thp—1ta
p
1

=X\g(z)[f(¥) — =]

w()(
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Hence
/|Vz/1|p_2V1/J.dex
Q
— by P*p,aipa — (1= ap *p,aipa p d
[t - ) o Vo w da
-1 1
< [ M@t et - Jude
Q (pTep—l ¢p71+a )a
1
— [ M@t - Solwda,
Q G
i.e. 9 is a subsolution of (1) for A € [A., A*].
Now we will construct a supersolution of (1.1). For this, we let z := ce and

w € W. Since Vz = ¢ Ve then a calculation shows that

/|Vz|p_2Vz.dex=cp_1/ |VelP~2 Ve . Vwdr
Q Q

= cp_l/ wdzx.
Q

By (H2) we can choose ¢ large enough so that

(cllelloao)”= (Mlg(@)llsc llelloc) ™ = flellellso)-

Hence
1> N[g(2)||oo F(clle]| o)

> Mg(e) f(ee)
> Ng(a)[f(ee) —

Thus we have

/|Vz\p_2Vz.dex:cp_1/wdx
) Q

Jwdx

1
> [ Nata)lp(ee) -
= [ ML) = s

i.e., z is a supersolution of (1.1) with z > ¢ for ¢ large (note |Ve| # 0; on 99).
Thus, there exist a positive weak solution w of (1.1) such that ¢ < u < z. This
completes the proof of Theorem 2.1. O
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