For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 4, Number 4, 2014, Pages 355-365                                                                DOI:10.11948/2014019
Remarks on the regularity criteria of the solutions of the 3D micropolar fluid equations
Liu Qiao
Keywords:micropolar fluid equations
Abstract:
      We provide two regularity criteria for the weak solutions of the 3D micropolar fluid equations, the first one in terms of one directional derivative of the velocity, i.e., $\partial_{3}u$, while the second one is is in terms of the behavior of the direction of the velocity $\frac{u}{|u|}$. More precisely, we prove that if \begin{equation*} \partial_{3}u \in L^{\beta}(0,T;L^{\alpha}(\mathbb{R}^{3}))\quad\text{ with }\frac{2}{\beta}+\frac{3}{\alpha}\leq 1+\frac{1}{\alpha}, 2< \alpha \leq\infty, 2\leq\beta< \infty; \end{equation*} or \begin{equation*} \operatorname{div}\left(\frac{u}{|u|}\right)\in L^{\frac{4}{1-2r}}(0,T;\dot{X}_{r}(\mathbb{R}^{3}))\quad \text{ with } 0\leq r< \frac{1}{2}, \end{equation*} then the weak solution $(u(x,t),\omega(x,t))$ is regular on $\mathbb{R}^{3}\times [0,T]$. Here $\dot{X}_{r}(\mathbb{R}^{3})$ is the multiplier space.
PDF      Download reader