For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 4, Number 3, 2014, Pages 245-270                                                                DOI:10.11948/2014012
Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent
Benboubker Mohamed Badr,Hjiaj Hassan,OUARO Stanislas
Keywords:Anisotropic Sobolev spaces
Abstract:
      In this work, we give an existence result of entropy solutions for nonlinear anisotropic elliptic equation of the type $$- \mbox{div} \big( a(x,u,\nabla u)\big)+ g(x,u,\nabla u) + |u|^{p_{0}(x)-2}u = f-\mbox{div} \phi(u),\quad \mbox{ in } \Omega,$$ where $-\mbox{div}\big(a(x,u,\nabla u)\big)$ is a Leray-Lions operator, $\phi \in C^{0}(I\!\!R,I\!\!R^{N})$. The function $g(x,u,\nabla u)$ is a nonlinear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum $f$ belongs to $L^1(\Omega)$.
PDF      Download reader