For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 3, Number 2, 2013, Pages 169-182                                                                DOI:10.11948/2013013
Numerical analysis for a locally damped wave equation
Mauro Antonio Rincon,Maria Inês Martins Copetti
Keywords:Damped wave equation
Abstract:
      We consider a semi-discrete finite element formulation with artificial viscosity for the numerical approximation of a problem that models the damped vibrations of a string with fixed ends. The damping coefficient depends on the spatial variable and is effective only in a sub-interval of the domain. For this scheme, the energy of semi-discrete solutions decays exponentially and uniformly with respect to the mesh parameter to zero. We also introduce an implicit in time discretization. Error estimates for the semi-discrete and fully discrete schemes in the energy norm are provided and numerical experiments performed.
PDF      Download reader