All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 2, Number 4, 2012, Pages 395-413                                                                DOI:10.11948/2012029
Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles
Rasool Kazemi,Hamidreza Zohouri Zangeneh
Keywords:Melnikov function
      In this paper we study the first-order Melnikov function for a planar near-Hamiltonian system near a heteroclinic loop connecting two nilpotent saddles. The asymptotic expansion of this Melnikov function and formulas for the first seven coefficients are given. Next, we consider the bifurcation of limit cycles in a class of hyper-elliptic Hamiltonian systems which has a heteroclinic loop connecting two nilpotent saddles. It is shown that this system can undergo a degenerate Hopf bifurcation and Poincarè bifurcation, which emerges at most four limit cycles in the plane for sufficiently small positive ε. The number of limit cycles which appear near the heteroclinic loop is discussed by using the asymptotic expansion of the first-order Melnikov function. Further more we give all possible distribution of limit cycles bifurcated from the period annulus.
PDF      Download reader