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BIFURCATION OF LIMIT CYCLES IN SMALL
PERTURBATIONS OF A HYPER-ELLIPTIC

HAMILTONIAN SYSTEM WITH TWO
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Abstract In this paper we study the first-order Melnikov function for a pla-
nar near-Hamiltonian system near a heteroclinic loop connecting two nilpotent
saddles. The asymptotic expansion of this Melnikov function and formulas for
the first seven coefficients are given. Next, we consider the bifurcation of limit
cycles in a class of hyper-elliptic Hamiltonian systems which has a heteroclinic
loop connecting two nilpotent saddles. It is shown that this system can un-
dergo a degenerate Hopf bifurcation and Poincarè bifurcation, which emerges
at most four limit cycles in the plane for sufficiently small positive ε. The
number of limit cycles which appear near the heteroclinic loop is discussed by
using the asymptotic expansion of the first-order Melnikov function. Further
more we give all possible distribution of limit cycles bifurcated from the period
annulus.
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1. Introduction and statements of results

The second part of the Hilbert’s 16th problem asks to find an upper bound for the
number of limit cycles and their relative locations in planar polynomial vector fields.
Although the problem is still far from being completely solved, the research on this
problem has made great progress with significant contributions to the development
of modern mathematics. The recent developments of Hilbert’s 16th problem were
summarized in the survey articles by Li [15], Han & Li [11] and Yu [22]. A weaker
version of this problem is proposed by Arnold to study the zeros of Abelian integrals
obtained by integrating polynomial 1-forms over ovals of polynomial Hamiltonian,
that is called the weak Hilbert’s 16th problem or infinitesimal Hilbert’s 16th problem
[1], where oval is a smooth simple closed curve which is free of critical points of
Hamiltonian function. To state the weak Hilbert’s 16th problem more precisely,
consider a perturbed planar Hamiltonian system

ẋ = Hy + εp(x, y, ε, δ),

ẏ = −Hx + εq(x, y, ε, δ), (1.1)

†The corresponding author. Email address: hamidz@math.iut.ac.ir(H. R. Z.
Zangeneh)

1Department of Mathematical Sciences, Isfahan University of Technology,
84156-83111, Isfahan, Iran
∗The authors thank Isfahan University of Technology for support.



396 R. Kazemi and H. R. Z. Zangeneh

where p, q and H are Cω functions, ε is a small positive parameter and δ is a vector
parameter where δ ∈ D ⊂ Rm and D is a compact set. Suppose the unperturbed
system

ẋ = Hy, ẏ = −Hx (1.2)

has a family of periodic orbits Lh defined by the equation H(x, y) = h. Then,
associated to a given perturbation of the system (1.1) there exist a so-called first-
order Melnikov function (also known as Abelian integrals) of the following form

M(h, δ) =

∮
Lh

qdx− pdy|ε=0, (1.3)

which plays an important role in the study of bifurcation of limit cycles from system
(1.1). We recall that a limit cycle of system (1.1) corresponds to an isolated zero of
M(h, δ) [7, 19].

When h is a critical value h0, the graph of H(x, y) = h0 contains a singular
point. The study of the asymptotic expansion of the Melnikov function M(h, δ)
about critical values is an interesting problem which is closely related to the weak
Hilbert’s 16th problem. Roussarie in [17] studied the asymptotic expansion of (1.3)
about the level set Lh0

:= {(x, y) : H(x, y) = h0}, which is a homoclinic loop
through a saddle point. Han et al studied the asymptotic expansion of the Melnikov
function near the critical values corresponding to a cuspidal loop and a homoclinic
loop through a nilpotent saddle [13,23].

In this paper first we study the asymptotic expansion of the Melnikov function
near a heteroclinic loop through two nilpotent saddles. Next, we consider a Liénard
system of type (7, 6) that is a small perturbation of Hamiltonian vector field with
a hyper-elliptic Hamiltonian of degree eight with Z2 symmetry. In the progress
of solving the weakened Hilbert’s 16th problem, the generalized Liénard system
ẋ = y, ẏ = Q1(x)+yQ2(x) of type (m,n) is of great interest, where Q1 and Q2 are
polynomials of degree respectively m and n. See for instance works of Dumortier
& Li [2–5] and Wang & Xiao [20].

Our system is as follows:

ẋ = y,

ẏ = x(x2 − 1)3 + ε(a+ bx2 + cx4 + x6)y, (Hε)

with Hamiltonian function

H(x, y) = y2/2 + x2/2− 3x4/4 + x6/2− x8/8, (1.4)

where 0 < ε� 1 and a, b and c are real parameters. The level sets of Hamiltonian
function (1.4) are sketched in Figure 1. The ovals γh = {(x, y) : H(x, y) = h, h ∈
(0, 1/8)} are closed orbits of system (H0) which form a unique period annulus in
the plane. When h = 0, γ0 is an elementary center (0, 0) of system (H0), and γ1/8

is the heteroclinic loop passing through nilpotent saddles S1(1, 0) and S2(−1, 0) of
system (H0). The Melnikov function of system (Hε) is

M(h, δ) =

∮
γh

(a+ bx2 + cx4 + x6)ydx = aI0(h) + bI1(h) + cI2(h) + I3(h), (1.5)

where Ik(h) =
∮
γh
x2kydx, k = 0, 1, 2, 3.
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We shall give a complete description of the number and the possible configura-
tions of limit cycles for system (Hε) in the plane. We study the Hopf bifurcation
and Poincaré bifurcation of system (Hε).

This paper is organized as follows. In Section 2, we study the Melnikov func-
tion near the heteroclinic loop connecting two nilpotent saddles point and give the
asymptotic expansion of the first-order Melnikov function near the heteroclinic loop
connecting two nilpotent saddle points for (1.1). In Section 3, we discuss the ex-
istence and number of limit cycles of (Hε). In subsection 3.1, we give a general
analysis on system (Hε) such as the properties and bifurcations of equilibria, and
we prove that there is no closed orbit surrounding two equilibria of system (Hε) and
system (Hε) can undergo degenerated Hopf bifurcation which emerges at most three
limit cycles in the plane. In subsection 3.2, we show that Melnikov function M(h, δ)
of system (Hε) has the Chebyshev property with accuracy one. In subsection 3.3
we calculate the asymptotic expansions of Melnikov function M(h, δ) at the end
points of open interval (0, 1/8) for (Hε), and conclude that system (Hε) can have
three limit cycles near the heteroclinic loop γ1/8. In subsection 3.4 we will discuss
all possible distribution of bifurcated limit cycles from the period annulus.

2. Asymptotic expansions of Melnikov function of
(1.2) about a heteroclinic loop

In this section we consider the first-order Melnikov function (1.3) of a heteroclinic
loop through two nilpotent saddles for general planar near-Hamiltonian systems.
The asymptotic expansion of this Melnikov function and formulas for its first seven
coefficients are given. For this we need the following result from the work of Zang
et al [23]:

Suppose the unperturbed system (1.2) has a family of periodic orbits Lh defined
by the equation H(x, y) = h. Let the boundary of the family {Lh} be a homoclinic
loop L0 = {(x, y) : H(x, y) = 0} with one nilpotent saddle of order one at the
origin. Then by [23] without loss of generality we can assume that H(x, y) has the
following formal expansion near the origin

H(x, y) = −1

4
x4 +

∑
j≥5

hj,0x
j + y2

∑
i+j≥0

hi,jx
iyj . (2.1)

In this case the following theorem due to Zang et al. [23] gives the asymptotic
expansion of the Melnikov function about the homoclinic loop L0 and an explicit
formula for its first seven coefficients (ci, i = 1, . . . , 7).

Theorem A. Let (2.1) be satisfied. Then for system (1.1), near the value h = 0
(0 < −h� 1) corresponding to nilpotent saddle loop L0 through a nilpotent saddle
point (0, 0) we have

M(h) =
[
c1 + c4|h|+

∑
j≥2Aj |h|j

]
+ |h|3/4

[
c2 + c6|h|+

∑
j≥2Bj |h|j

]
+ ln |h|

[
c3h+ c7h

2 +
∑
j≥3 Cj |h|j

]
+ |h|5/4

[
c5 +

∑
j≥2Dj |h|j

]
,

(2.2)
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where

c1 = M(0), c2 = −4
√

2d0,0∆0,2

3
, c3 = −

√
2d1,0

2
,

c4 =

∮
L0

(px + qy)|ε=0dt for c2 = c3 = 0 c5 = −4
√

2d2,0∆2,2

5
,

c6 =
8
√

2(d0,2 − 2d4,0)∆0,2

21
, c7 =

√
2(4d5,0 − d1,2)

8
, (2.3)

∆0,2 > 0 and ∆2,2 < 0 are constants and di,0 (i = 1, 2, 4, 5) and di,2 (i =
1, 2) are some terms depending explicitly on the coefficients of the expansions of
H(x, y), p(x, y, 0, δ) and q(x, y, 0, δ).

The coefficients c2, c3, c5, c6 and c7 in Theorem A are called local coefficients of
M at the nilpotent saddle O.

Now, inspired by the work of Sun et al [18] and using Theorem A we are ready
to obtain the asymptotic expansion of the Melnikov function near a heteroclinic
loop through two nilpotent saddles. Suppose system (1.1) has two nilpotent saddles
S1 and S2. Moreover assume :

(A1) The unperturbed system (1.2) has a heteroclinic loop denoted by L0 :=
{(x, y) : H(x, y) = 0} = L1 ∪L2 ∪{S1, S2}, where L1 and L2 are heteroclinic orbits
connecting saddle points S1 and S2 so that ω(L1) = α(L2) = S2 and ω(L2) =
α(L1) = S1.

(A2) In a neighborhood of L0 there is a family of periodic orbit of (1.2) denoted
by Lh = {(x, y) : H(x, y) = h} for 0 < −h� 1.

Then there exist two transformations of the form(
x
y

)
= Qk

(
u
v

)
+ Sk, k = 1, 2, (2.4)

where Qk is a 2× 2 matrix satisfying det(Qk) = 1, such that

u̇ =
∂Hk

∂v
+ εpk(u, v, ε, δ), v̇ = −∂Hk

∂u
+ εqk(u, v, ε, δ), (2.5)

where

Hk(u, v) = −1

4
u4 +

∑
j≥5

hkj,0u
j + v2

∑
i+j≥0

hki,ju
ivj , k = 1, 2,

pk(u, v, 0, δ) =
∑
i+j≥0

aki,ju
ivj , qk(u, v, 0, δ) =

∑
i+j≥0

bki,ju
ivj , k = 1, 2.

Then we can apply the formula for the local coefficients c2, c3, c5, c6 and c7 in The-
orem A to the new system (2.5) with k = 1, 2, and obtain the corresponding values
ci(Sk, δ), i = 2, 3, 5, 6, 7, k = 1, 2 for the nilpotent saddles Sk, k = 1, 2. Now we are
ready to state the following theorem.

Theorem 2.1. Consider the Cω system (1.1) and suppose (1.2) satisfy assumptions
(A1) and (A2). Then near h = 0 corresponding to heteroclinic loop L0, Melnikov
function of system (1.1) has the following asymptotic expansion:

M(h) =
[
c̃1 + c̃4|h|+

∑
j≥2 Ãj |h|j

]
+ |h|3/4

[
c̃2 + c̃6|h|+

∑
j≥2 B̃j |h|j

]
+ ln |h|

[
c̃3h+ c̃7h

2 +
∑
j≥3 C̃j |h|j

]
+ |h|5/4

[
c̃5 +

∑
j≥2 D̃j |h|j

]
(2.6)
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where

c̃1 = c̃1(δ) = M(0, δ) =

∮
L0

qdx− pdy|ε=0 =

2∑
k=1

∮
Lk

(qdx− pdy)|ε=0,

c̃i = c̃i(δ) = ci(S1, δ) + ci(S2, δ), i = 2, 3, 5, 6, 7

and if c2(S1, δ) = c2(S2, δ) = c3(S1, δ) = c3(S2, δ) = 0 then

c̃4 = c̃4(δ) =

∮
L0

(px + qy)|ε=0dt =

2∑
k=1

∫
Lk

(px + qy)|ε=0dt. (2.7)

Proof. The idea of proof is borrowed from [18]. Let Ui denote a disk of diameter
ε0 ≥ 0 with centers at Sk, k = 1, 2 respectively (see Figure 1). Then for ε0 sufficiently
small we can write

M(h, δ) = I1(h, δ) + I2(h, δ) + I3(h, δ), for 0 < −h� 1, (2.8)

where

Ik(h, δ) =

∮
Lh,k

(qdx− pdy)|ε=0, k = 1, 2, 3

Lh,k = Lh ∩ Uk, k = 1, 2, Lh,3 = (Lh \ ∪2
k=1Lh,k).

By Theorem (2) in [23] we can apply the formula for the local coefficients c2, c3, c5, c6
and c7 in Theorem A to the system (2.5) with k = 1, 2 and obtain the following
expansion of Ik:

Ik(h) = c2(Sk, δ)|h|3/4 + c3(Sk, δ)h ln |h|+ c5(Sk, δ)|h|5/4 + c6(Sk, δ)|h|7/4

+c7(Sk, δ)h
2 ln |h|+O(h2) + ϕk(h, δ) (2.9)

for 0 < −h � 1 and ϕk ∈ Cω at h = 0, with ϕk(0, δ) = O(ε0). According to
(2.8)-(2.9) we have

M(h, δ) = c̃2|h|3/4 + c̃3h ln |h|+ c̃5|h|5/4 + c̃6|h|7/4 + c̃7h
2 ln |h|

+O(h2) +N(h, δ) (2.10)

for 0 < −h � 1 where N(h, δ) = ϕ1(0, δ) + ϕ2(0, δ) + I3(h, δ) and c̃i = c̃i(δ) =
ci(S1, δ) + ci(S2, δ) , i = 2, 3, 5, 6, 7. Let

N(h, δ) = c̃1(δ) + c̃4(δ)h+O(h2). (2.11)

It is easy to see that

c̃1(δ) =ϕ1(0, δ) + ϕ2(0, δ) + I3(0, δ)

= lim
ε0→0

[ϕ1(0, δ) + ϕ2(0, δ) + I3(0, δ)]

= lim
ε0→0

I3(0, δ) =

∮
L0

(qdx− pdy)|ε=0

=

2∑
i=1

∮
Li

(qdx− pdy)|ε=0 = M(0, δ) (2.12)
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Figure 1. Level curves of equation (Hε) for 0 ≤ h ≤ 1/8

since ϕk(0, δ) = O(ε0), k = 1, 2. We only need to give the formula for c4(δ). By
(2.10) and (2.11), we have

c̃4(δ) +O(h) = Nh(h, δ) = Mh(h, δ) +
3

4
c̃2|h|−1/4 − c̃3(1 + ln |h|) +O(|h|1/4),

according to [9] we know that Mh(h, δ) =
∮
Lh

(px + qy)|ε=0dt, then

c̃4(δ) = Nh(0, δ) = lim
h→0

[∮
Lh

(px + qy)|ε=0dt+
3

4
c̃2|h|−1/4 − c̃3(1 + ln |h|)

]
.

If c2(S1, δ) = c2(S2, δ) = 0 and c3(S1, δ) = c3(S2, δ) = 0 then it is obvious that
c̃2(δ) = c̃3(δ) = 0 and therefore

c̃4(δ) =

∮
L0

(px + qy)|ε=0dt =

2∑
k=1

∫
Lk

(px + qy)|ε=0dt.

This completes the proof.

3. Application

In this section we provide a complete description of the number and the possible
configurations of limit cycles for system (Hε) in the plane.

3.1. Local stability and Hopf bifurcation of system (Hε)

In this subsection we study the topological classifications of the equilibria of system
(Hε), and show that the system can undergo a degenerate Hopf bifurcation from
which at most three limit cycles emerge near the equilibrium O(0, 0). Moreover,
we show that system (Hε) does not have a closed orbit surrounding the equilibria
S1(1, 0) and S2(−1, 0) of system (Hε).

Clearly, system (Hε) always has three equilibria S1(1, 0), O(0, 0) and S2(−1, 0)
for each set of parameters (a, b, c). In the following lemma we give a detailed
classification of all possible dynamics of these equilibria.

Lemma 3.1. Suppose 0 < ε� 1. Then equilibrium O(0, 0) is a focus and Si, i =
1, 2 are degenerated (or nilpotent) saddles. More precisely we have:
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(Oi) if a 6= 0 and |εa| < 2, then O(0, 0) is a hyperbolic focus. And it is stable
(unstable) if a < 0 (a > 0);

(Oii) if a = 0 and b 6= 0, then O(0, 0) is a weak focus of order one. And it is
stable (unstable) if b < 0 (b > 0);

(Oiii) if a = 0, b = 0 and c 6= 0, then O(0, 0) is a weak focus of order two. It is
stable (unstable) if c < 0 (c > 0);

(Oiv) if a = 0, b = 0 and c = 0, then O(0, 0) is an unstable weak focus of order
three;

(Si) if 1 + a+ b+ c 6= 0, then S1(1, 0) and S2(−1, 0) are degenerated saddles;
(Sii) if 1 + a+ b+ c = 0, then S1(1, 0) and S2(−1, 0) are nilpotent saddles.

Proof. We first study the equilibrium O(0, 0). The statement (Oi) can be proved
by a straightforward calculation of eigenvalues at O(0, 0) for (Hε).

To prove the statements (Oii)− (Oiv), we use change of coordinate X = x, Y =
y− ε(bx3/3 + cx5/5 +x7/7) to convert system (Hε) to the following Liénard system

Ẋ = Y − F (X), Ẏ = −g(X), (3.1)

where F (X) = −ε(bX3/3 + cX5/5 + X7/7), and g(X) = −X(X2 − 1)3. For
convenience we still use x and y instead of X and Y , respectively. It is clear that
g(0) = F (0) = F ′(0) = 0 and g′(0) > 0. Let G(x) =

∫ x
0
g(s)ds. According

to lemma 1 and lemma 2 in [10] if there exists a C∞ function α(x) in a small
neighborhood of zero with α(x) = −x + O(x2), such that G(α(x)) ≡ G(x) and
F (α(x))− F (x) =

∑
i≥1Bix

i, then the equilibrium O(0, 0) of (3.1) is a weak focus
of order k if Bj = 0, j = 1, 2, · · · , 2k, and B2k+1 6= 0. And it is stable (unstable) if
B2k+1 < 0 (B2k+1 > 0). By symmetry, we have α(x) = −x and

F (α(x))− F (x) = 2ε
(
bx3/3 + cx5/5 + x7/7

)
.

Now using the lemma 1 and lemma 2 in [10] we can obtain statements (Oii)−(Oiv).
Now we consider the equilibrium E1(1, 0). By moving E1(1, 0) to the origin, the
system (Hε) becomes

ẋ = y

ẏ = (x+ 1)x3(x+ 2)3 + ε
[
a+ b(x+ 1)2 + c(x+ 1)4 + (x+ 1)6

]
y. (3.2)

If 1 + a + b + c 6= 0, then the eigenvalues of system (3.2) at (0, 0) are zero and
ε(1 + a+ b+ c). Therefore, (0, 0) is a degenerate equilibrium for (3.2). In order to
classify (0, 0) topologically let us denote (1 + a+ b+ c)ε = µ and

X = x− µ−1y, Y = y, τ = µt.

Using this transformation system (3.2) becomes

dX

dτ
= p2(X,Y ),

dY

dτ
= Y + q2(X,Y ), (3.3)

where

p2(X,Y ) = −ε(6 + 4c+ 2b)µ−2Y (X + µ−1Y )− 8µ−2(X + µY )3

−(15 + b+ 6c)εµ−2(X + µ−1Y )2Y +O(|X,Y |4),

q2(X,Y ) = −µp2(X,Y ).
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By implicit function theorem, we know that, there exists a smooth function Y =
ϕ(X) and a small positive number δ such that ϕ(X)+ q2(X,ϕ(X)) = 0 for |X| < δ,
where

ϕ(X) = −8µ−1X3 +O(X4).

Therefore, p2(X,ϕ(X)) = −8µ−2X3 +O(X4). According to theorem 3.5 in [6], the
equilibrium (0, 0) is a saddle. This implies the statement (Si) for S1(1, 0) and by
symmetry this is true for S2(−1, 0) as well.

If 1 + a + b + c = 0, then both eigenvalues of system (3.2) are zeros and the
linearized matrix is not zero matrix. Hence, in this case the equilibrium (0, 0) is
nilpotent and by Theorem 3.5 in [6], (0, 0) is a nilpotent saddle for system (3.2).
This implies statement (Sii) for S1(1, 0) and by symmetry this is true for S2(−1, 0)
as well.

By Hopf bifurcation theorem and lemma 3.1, there are three surfaces for which
as the parameters a, b and c pass through, the equilibrium O(0, 0) can exprience a
series of Hopf bifurcation for any given ε with 0 < ε � 1. The Hopf bifurcation
surface of codimension one is given by

H1 = {(a, b, c, ε) : a = 0, b 6= 0, 0 < ε� 1}.

And on the closure of H1 there is a curve

H2 = {(a, b, c, ε) : a = 0, b = 0, c 6= 0 < ε� 1},

which is a degenerate Hopf bifurcation curve of codimension two. On the closure of
this curve, there is point

H3 = {(a, b, c, ε) : a = 0, b = 0, c = 0 < ε� 1},

which is degenerate Hopf point of codimension three. More precisely, we have the
following theorem.

Theorem 3.1. Suppose 0 < ε � 1. A series of Hopf bifurcations occurs near
equilibrium O(0, 0) of system (Hε) in a small neighborhood of bifurcation point
(a, b, c) = (0, 0, 0). In particular, a unique unstable limit cycle bifurcates from e-
quilibrium O(0, 0) of system (Hε) for a = 0, b = 0 and as c decreases from zero;
a unique stable limit cycles bifurcates from equilibrium O(0, 0) of system (Hε) for
a = 0, c < 0 and as b increases from zero; and a unique unstable limit cycle bifur-
cates from equilibrium O(0, 0) of system (Hε) for c < 0, b > 0 and as a decreases
from zero. Therefore, system (Hε) has three limit cycles surrounding the equilibrium
O(0, 0) for a < 0, b > 0 and as c < 0, in which two of the limit cycles are unstable
and the other is stable.

Theorem 3.1 implies that the maximum number of small amplitude limit cycles
which can bifurcate from equilibrium O(0, 0) of system (Hε) is three. In the follow-
ing we study the existence of a closed orbit surrounding two equilibria of system
(Hε) and the maximum number of limit cycles (not only small amplitude) of system
(Hε) in a small neighborhood of bifurcation value (a, b, c) = (0, 0, 0) for 0 < ε� 1.

Theorem 3.2. Suppose 0 < ε� 1. Then

(i) System (Hε) has no closed orbits surrounding two equilibria E1(1, 0) or E2(−1, 0).
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(ii) System (Hε) does not have a closed orbit if a = b = c = 0.

Proof. We first prove the statement (i) by contradiction. Suppose that system
(Hε) has a closed orbit γ surrounding E1(1, 0). Then γ crosses line x = 1 and
positive x-axis respectively at U(1, y+

1 ), D(1, y−1 ) and R(xr, 0), where y−1 < 0 < y+
1

and xr > 1. Hence, the vector field of system (Hε) at P (1, y+
1 ) is (y+

1 , ε(1 + a +
b+ c)y+

1 ), and vector field of system (Hε) at R(x+, 0) is (0, xr(x
2
r − 1)3). Therefore

the orientation of vector field on γ at R is counterclockwise while the orientation of
vector field on γ at U is clockwise. This is a contradiction. By symmetry similarly,
it can be shown that system (Hε) has no closed orbits surrounding equilibrium
E2(−1, 0). Thus statement (i) is proved.

Next, we prove the statement (ii). From (i) we know that there will be no
periodic orbit surrounding E1 and E2. On the other hand the direction of vector
field of (Hε) along lines x = ±1 for y > 0 remain unchanged (similarly for y < 0).
Using this and part (i) we conclude that the closed orbits encircling the origin can
not intersect lines x = ±1. Therefore we only need to study existence of a closed
orbit surrounding only the equilibrium O(0, 0) in the the region D = {(x, y) : −1 <
x < 1, −∞ < y < +∞} when a = b = c = 0. Now we set a = b = c = 0, and
convert the system (Hε) to the following system

ẋ = y − F1(x), ẏ = −g1(x), (3.4)

where F1(x) = −εx7/7, g1(x) = −x(x2 − 1)3 and −1 < x < 1. It is clear that
xg1(x) > 0 for −1 < x < 1 and x 6= 0. Let

G1(x) =

∫ x

0

g1(s)ds = −1

8
x8 +

1

2
x6 − 3

4
x4 +

1

2
x2.

Also by straightforward calculations we see that the system of equations

F1(u) = F1(x), G1(u) = G1(x), (3.5)

has no solution (u, x) with −1 < u < 0 and 0 < x < 1. Therefore Theorem 2.4
in [14] implies that system (3.4) does not have a closed orbit for 0 < x < 1. This
implies the statement (ii) and ends the proof of theorem.

Based on theorems 3.1 and 3.2 we have the following theorem.

Theorem 3.3. Suppose 0 < ε� 1. For (a, b, c) in a small neighborhood of (0, 0, 0),
system (Hε) has at most three limit cycles in the plane. Moreover, there exists
parameters values in this small neighborhood such that system (Hε) has exactly three
limit cycles surrounding the equilibrium O(0, 0) and no limit cycles surrounding any
two equilibria or all three equilibria.

3.2. Bifurcation of limit cycles from the period annulus

In this subsection we study the maximum number of limit cycles which bifurcate
from the period annulus of system (Hε) for 0 < ε� 1. We use an algebraic criterion
developed in [16] to study the related Melnikov function M(h, δ) of system (Hε).
But first we give the following definition:

Definition 3.1. The base functions {Ii(h), i = 1, . . . , n} in the Melnikov function
M(h, δ) is said to be a Chebyshev system with accuracy k, if number of zeros of
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any nontrivial linear combination

α0I0(h) + α1I1(h) + · · ·+ αnIn(h)

counted with multiplicity is at most n+ k − 1.

Now consider a Hamiltonian function with the following special form

H(x, y) = A(x) +B(x)y2m,

which is analytic in some open subset of the plane and has a local minimum at the
origin. Then there exist a punctured neighborhood P of the origin foliated by the
ovals or period annulus γh ⊂ {H(x, y) = h}. We fix that H(0, 0) = 0. The period
annulus can be parameterized by the energy levels h ∈ (0, h0) for some h0 ∈ (0,+∞].
In what follows, we shall denote the projection of P on the x-axis by (x`, xr) with
xl < 0 < xr. It is easy to verify that, under the above assumptions, xA′(x) > 0
for any x ∈ (x`, xr) \ {0} and B(x) > 0 for all x ∈ (x`, xr). Thus there exists a
smooth invertible function z(x) with x` < z(x) < 0 such that A(x) = A(z(x)) for
0 < x < xr. The following theorem is Theorem A in [16].
Theorem B. Let us consider the Abelian integrals

Ii(h) =

∫
γh

fi(x)y2s−1dx, i = 0, 1, . . . , n− 1,

where, for each h ∈ (0, h0), γh is the oval surrounding the origin inside the level
curve {A(x) + B(x)y2m = h}, fi are analytic functions on (xl, xr) and s ∈ N. We
define

li(x) :=
fi(x)

A′(x)(B(x))
2s−1
2m

− fi(z(x))

A′(z(x))(B(z(x)))
2s−1
2m

.

If the following conditions are verified:

a) W [l0, . . . , li] is non-vanishing on (0, xr) for i = 0, 1, . . . , n− 2,

b) W [l0, . . . , ln−1] has k zeros on (0, xr) counted with multiplicities, and

c) s > m(n+ k − 2)

then the base functions {Ii(h), i = 1 . . . , n − 1} form a Chebyshev system with
accuracy k on (0, h0) where W [l0, l1, . . . , lk] denotes the Wronskian of the functions
{l0, l1, . . . , lk} at x ∈ (0, xr).

The applicability of this theorem comes from the fact that finding an upper
bound for the Melnikov function M(h, δ) follows just from some pure algebraic
expression. Now we use Theorem B to show that that {Ii(h), i = 1, 2, 3, 4} in (1.5)
has Chebyshev property with accuracy 1 and therefore the number of zeros of the
Melnikov function M(h, δ) in the open interval (0, 1/8) is at most four.

Let us consider Melnikov function (1.5) with Hamiltonian function (1.4), which
is a linear combination of {I0(h), I1(h), I2(h), I3(h)}, where Ii(h) =

∮
γh
x2iydx, i =

0, 1, 2, 3 and

γh := {(x, y) : A(x) +B(x)y2 = h, 0 < h < 1/8},

with A(x) = −x8/8 + x6/2− 3x4/4 + x2/2, and B(x) = 1/2. The projection of the
period annulus on the x-axis is (−1, 1). Note that xA′(x) > 0 for all x ∈ (−1, 1)\{0}.
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Therefore, there exists an invertible function z(x) with −1 < z(x) < 0 such that
A(x) = A(z(x)) for 0 < x < 1. In our case z(x) = −x. To apply Theorem B, we
notice that in this case, Ii(h) =

∫
γh
x2iydx and hence m = 1, n = 4 and s = 1.

Therefore the hypothesis (c) (s > m(n + k − 2)) in Theorem B is not satisfied.
However it is possible to overcome this problem using Lemma 4.1 in [8], and obtain
some new Abelian integrals for which the corresponding s is large enough to verify
the inequality. Here we need to promote the power s to four such that the condition
s > n− 1 hold. On the oval γh, since 2h = 2A(x) + y2, we have

Ii(h) =

∮
γh

x2iydx =
1

2h

(∮
γh

2x2iA(x)ydx+

∮
γh

x2iy3dx

)
, i = 0, 1, 2, 3. (3.6)

Now we apply Lemma 4.1 in [8] with k = 3 and F (x) = 2x2iA(x) to get∮
γh

2x2iA(x)ydx =

∮
γh

Gi(x)y3dx,

where Gi(x) = d
3dx ( 2x2iA(x)

A′(x) ) = gi
12(x2−1)4 , and

gi = [(2i+ 1)x8 − (10i+ 3)x6 + (20i+ 2)x4 − (20i− 2)x2 + (8i+ 4)]x2i.

By (3.6) we obtain

Ii(h) =
1

2h

∮
γh

(
x2i +Gi(x)

)
y3dx =

1

4h2

∮
γh

(2A(x) + y2)(x2i +Gi(x))y3dx

=
1

4h2

(∮
γh

2(x2i +Gi(x))A(x)y3dx+

∮
γh

(x2i +Gi(x))y5dx

)
. (3.7)

Again we apply Lemma 4.1 in [8] with k = 5 and F (x) = 2(x2i +Gi(x))A(x) to get∮
γh

2(x2i +Gi(x))A(x)y3dx =

∮
γh

G̃i(x)y5dx,

where G̃i(x) = d
5dx ( 2(x2i+Gi(x))A(x)

A′(x) ) = g̃i
−240 (x2−1)8 , and

g̃i = x2i+12[(4i2 + 28i+ 13)x4 − (40i2 + 244i+ 92)x2 + (180i2 + 936i+ 271)]

−x2i+6[(480i2 + 2064i+ 416)x4 − (832i2 + 2872i+ 364)x2

+(960i2 + 2616i+ 212)]

+x2i[(720i2 + 1584i+ 100)x4 − (320i2 + 656i+ 8)x2 + (64i2 + 160i+ 64)].

By (3.7) we obtain

Ii(h) =
1

4h2

∮
γh

(
x2i +Gi(x) + G̃i(x)

)
y5dx

=
1

8h3

∮
γh

(2A(x) + y2)(x2i +Gi(x) + G̃i(x))y5dx

=
1

8h3

∮
γh

2(x2i +Gi(x) + G̃i(x))A(x)y5dx

+
1

8h3

∮
γh

(x2i +Gi(x) + G̃i(x))y7dx. (3.8)
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Again we apply Lemma 4.1 in [8] with k = 7 and F (x) = 2(x2i+Gi(x)+G̃i(x))A(x)
to get ∮

γh

2(x2i +Gi(x) + G̃i(x))A(x)y5dx =

∮
γh

Ḡi(x)y7dx,

where Ḡi(x) = d
7dx ( 2(x2i+Gi(x)+G̃i(x))A(x)

A′(x) ) = ḡi
6720 (x2−1)12 , and

ḡi = (8i3 + 140i2 + 614i+ 273)x2i+24

−(120i3 + 1924i2 + 7722i+ 3035)x2i+22

+(840i3 + 12236i2 + 44558i+ 15213)x2i+20

−(3640i3 + 47684i2 + 155922i+ 45183)x2i+18

+(10896i3 + 126936i2 + 368700i+ 88314)x2i+16

−(23760i3 + 243352i2 + 621772i+ 119898)x2i+14

+(38720i3 + 344928i2 + 769648i+ 116808)x2i+12

−(47520i3 + 365232i2 + 709272i+ 83028)x2i+10

+(43584i3 + 288608i2 + 488144i+ 43224)x2i+8

−(29120i3 + 168224i2 + 248816i+ 17160)x2i+6

+(13440i3 + 70336i2 + 92064i+ 5936)x2i+4

−(3840i3 + 19584i2 + 24576i+ 1152)x2i+2

+(512i3 + 2816i2 + 4352i+ 1536)x2i.

From (3.8) we obtain

8h3Ii(h) =

∮
γh

fi(x)y7dx ≡ Ĩi(h), (3.9)

where fi(x) = x2i + Gi(x) + G̃i(x) + Ḡi(x). It is clear that {Ĩ0, Ĩ1, Ĩ2, Ĩ3} is an
Chebyshev system with accuracy one on (0, 1/8) if and only if {I0, I1, I2, I3} is as
well. Now we can apply Theorem B with

li(x) =

(
fi
A′

)
(x)−

(
fi
A′

)
(−x),

and s = 4, since the condition s > m(n + k − 2) holds. We need to prove that
{l0, l1, l2, l3} satisfy hypothesis ((i) − (iii)) in Theorem B with k = 1. To do this
we prove the following lemma.

Lemma 3.2.

(i) W [l0](x) 6= 0 for all x ∈ (0, 1);

(ii) W [l0, l1](x) 6= 0 for all x ∈ (0, 1);

(iii) W [l0, l1, l2](x) 6= 0 for all x ∈ (0, 1);

(iv) W [l0, l1, l2, l3](x) has one zero on (0, 1) counted with multiplicities.

Proof. Using Maple we compute the above four Wronskians. We find out that

W [l0](x) =
q0(x)

x(x2 − 1)15
, W [l0, l1](x) =

q1(x)

x(x2 − 1)30
,

W [l0, l1, l2](x) =
q2(x)

(x2 − 1)45
, W [l0, l1, l2, l3](x) =

q3(x)

(x2 − 1)59
,
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where q0(x) is a polynomial of degree 24, q1(x) is a polynomial of degree 48, q2(x)
is a polynomial of degree 72 and q3(x) is a polynomial of degree 94 in x. By
applying Sturm’s theorem [8], we find that q0(x), q1(x) and q2(x) are nonzero for all
x ∈ (0, 1) while q3(x) has a unique root in the interval (0, 1) at x∗ ≈ 0.7325481003.
This completes the proof.

Thereby we have proved the following theorem:

Theorem 3.4. If the Melnikov function M(h, δ) is not identically zero then it has
at most four zeros, counting multiplicities, in any compact subinterval of (0, 1/8)
and for all values of parameters (a, b, c). And the number of limit cycles bifurcating
from the period annulus is at most four.

3.3. Asymptotic expansion of Melnikov function M(h, δ)

In this subsection we study the asymptotic expansion of Melnikov function M(h, δ)
at the end points h = 0 and h = 1/8, respectively. Using these asymptotic expan-
sions we prove the following theorem:

Theorem 3.5. There exist some parameter values such that the Melnikov function
M(h, δ) has three isolated zeros in (0, 1/8).

Proof. To obtain the asymptotic expansion of Melnikov function M(h, δ) as h→
0+, we compute M(h, δ) near the elementary center O(0, 0). Let x = r cos θ, y =
r sin θ. Then the oval

γh : (x2 + y2)/2− 3x4/4 + x6/2− x8/8 = h,

is transformed into

r
(
1− 3r2 cos4 θ/2 + r4 cos6 θ − r6 cos8 θ/4

) 1
2 −
√

2h = 0,

for 0 < h � 1. Let ρ =
√

2h and define F (r, ρ) to be the left hand expression
of the above equality. Applying the Implicit Function Theorem to F (r, ρ) = 0 at
(r, ρ) = (0, 0), we obtain that there exists a smooth function r = ϕ(ρ) and a small
positive number 0 < δ � 1 such that F (ϕ(ρ), ρ) ≡ 0 for 0 < ρ < δ. It can be easily
verified that ϕ(ρ) has the following expansion

ϕ(ρ) = ρ+

(
3

4
cos4 θ

)
ρ3 +

(
63

32
cos8 θ − 1

2
cos6 θ

)
ρ5

+

(
891

128
cos12 θ − 27

8
cos10 θ +

1

8
cos8 θ

)
ρ7 +O(ρ9). (3.10)

Now we compute Melnikov function M(h, δ) in the coordinate system (r, θ). From
(3.10) we have

M(h, δ) =

∮
γh

(a+ bx2 + cx4 + x6)ydx =

∫∫
intγh

(a+ bx2 + cx4 + x6)dxdy

=

∫ 2π

0

dθ

∫ ϕ(ρ)

0

(
a+ br2 cos2 θ + cr4 cos4 θ + r6 cos6 θ

)
r dr. (3.11)
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Note that h = ρ2

2 . With the help of Maple we use (3.11) to obtain the asymptotic
expansion of M(h, δ) as h→ 0+,

M(h, δ) = πh

[
2a+

(
9

4
a+ b

)
h+

(
235

32
a+

15

4
b+ c

)
h2

+

(
16625

512
a+

2275

128
b+

105

16
c+

5

4

)
h3 +O(h4)

]
. (3.12)

We set

b0 = 2aπ, b1 = (
9

4
a+ b)π, b2 = (

235

32
a+

15

4
b+ c)π

b3 = (
16625

512
a+

2275

128
b+

105

16
c+

5

4
)π.

If b0 = b1 = b2 = 0 then a = b = c = 0 and b3 = 5/4 6= 0. By theorem 2 in [12]
we can see that M(h, δ) has three isolated zeros for 0 < h� 1 in the neighborhood
of (a, b, c) = (0, 0, 0) which coincides with Hopf bifurcation values of system (Hε)
in subsection 3.1. Now let us apply Theorem 2.1 to system (Hε) and obtain the
asymptotic expansion of Melnikov function (1.5) as h→ (1/8)−. It is clear that on
the loop γ1/8 we have H(x, y) = 1/8, which implies that y± = ± 1

2 (x2 − 1)2, thus

c̃1(δ) = I(0, δ) = 2

∫ 1

−1

(a+ bx2 + cx4 + x6)y+dx

= 16(1/693 + c/315 + b/105 + a/15).

In order to find c2 and c3, we have to move saddles S1 and S2 to the origin separately.
For S2 = (−1, 0) let X = 4

√
8(x + 1), Y = y, and T = 4

√
8t and still denote X,Y

and T by x, y and t , respectively. Then system (Hε) becomes

ẋ = y, (3.13)

ẏ = x7/64− 7
4
√

8x6/64 + 9
√

2x5/16− 5
4
√

2x4/4 + x3 + εyq1(x),

where

q1(x) =
4
√

8x6/64− 3
√

2x5/16 +
4
√

2 (120 + 8 c)x4/128− (c+ 5)x3/2

+
4
√

8 (b+ 6c+ 15)x2/8−
√

2 (b+ 2c+ 3)x/2 +
4
√

2(a+ b+ c+ 1)/2.

For ε = 0 the Hamiltonian function is

H(x, y) = −x8/512 + 23/4x7/64− 3
√

2x6/32 +
4
√

2x5/4− x4/4.

Thus from Theorem A we see that

c2(S2, δ) = −2
4
√

8 (a+ 1 + b+ c) /3,

c3(S2, δ) =
(

1/8−
√

2
)
c+

(
1/8−

√
2/2
)
b+ 1/8 a+ 1/8− 3/2

√
2.

For the nilpotent saddle S1 = (1, 0), we make the transformations X = 4
√

8(1 −
x), Y = y and T = − 4

√
8t and still denote X,Y and T by x, y and t , respectively.

Then by Z2 symmetry system (Hε) becomes exactly as system (3.13) and therefore
c2(S1, δ) = c2(S2, δ) and c3(S1, δ) = c3(S2, δ). Then c̃2(δ) = −4 4

√
8 (a+ 1 + b+ c) /3
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and c̃3(δ) =
(
1/4− 2

√
2
)
c +

(
1/4−

√
2
)
b + 1/4 a + 1/4 − 3

√
2. If c2(S1, δ) =

c2(S2, δ) = 0 and c3(S1, δ) = c3(S2, δ) = 0 then c̃2(δ) = c̃3(δ) = 0 and we have
(a, b, c) = (2 + c,−2c− 3, c). At this parameters value we obtain

c̃4(δ) =

∮
γ1/8

(a+ bx2 + cx4 + x6)dt = 2

∫ 1

−1

(a+ bx2 + cx4 + x6)
dx

y+
= 8c+

56

3
.

Then the equations c̃1 = c̃2 = c̃3 = 0 have a unique solution

(a, b, c) = (−1/11, 13/11,−23/11),

substituting into c̃4 we have c̃4 = 64/33 6= 0 and

rank
∂(c̃1, c̃2, c̃3)

∂(a, b, c)
= 3,

by Theorem 4 in [23] we know that system (Hε) can have three limit cycles near
the heteroclinic loop γ1/8.

3.4. Distribution of bifurcated limit cycles

To obtain more limit cycles we consider the limit cycles bifurcated from the annulus
not only near the center O(0, 0) but also near the heteroclinic loop γ0, based on the
following discussion.

The Melnikov function M(h, δ) near the elementary center O(0, 0) has the fol-
lowing expansion (see [12]):

M(h, δ) =
∑
j≥0

bj(δ)h
j+1, 0 < h� 1. (3.14)

Also by the result of section 2 the Melnikov function M(h, δ) near the heteroclinic
loop γ1/8 has the following expansion:

M(h, δ) = c̃1(δ) + c̃2(δ)|h| 34 + c̃3(δ)(h) ln |h|+ c̃4(δ)|h|

+c̃5(δ)|h| 54 + c̃6(δ)|h| 74 + c̃7(δ)h2 ln |h|+O(h2), 0 < −h� 1.
(3.15)

Now we are ready to state the following theorem:

Theorem 3.6. Consider system (1.1) and suppose there exists δ0 ∈ D ⊂ Rm such
that

c̃1(δ0) = c̃2(δ0) = · · · = c̃m(δ0) = 0, c̃m+1(δ0) 6= 0,

b0(δ0) = b1(δ0) = · · · = bk−1(δ0) = 0, bk(δ0) 6= 0
(3.16)

and

rank
∂(c̃1, c̃2, · · · , c̃m, b0, b1, · · · , bk−1)

∂δ
= m+ k. (3.17)

Then system (1.1) can have m + k + 1−sgn(M(h1,δ0)M(h2,δ0))
2 limit cycles for some

(ε, δ) near (0, δ0) from which m limit cycles are near the heteroclinic loop γ1/8, k

limit cycles are near the center O(0, 0) and 1−sgn(M(h1,δ0)M(h2,δ0))
2 limit cycle are

surrounding the center O(0, 0), where h1 = 0 − ε1, h2 = 0 + ε2 with ε1 and ε2 are
positive and very small.
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Proof of Theorem 3.6, is similar to that of Theorem 2.1 in [21] by using implicit
function theorem. Here we omit the proof for the sake of brevity.

In our case we have:

b0(δ) = 2aπ, b1(δ) = (
9

4
a+ b)π, b2(δ) = (

235

32
a+

15

4
b+ c)π,

b3(δ) = (
16625

512
a+

2275

128
b+

105

16
c+

5

4
)π,

c̃1(δ) = 16(
1

693
+

1

315
c+

1

105
b+

1

15
a), c̃2(δ) = −4

3
4
√

8(a+ 1 + b+ c),

c̃3(δ) = (
1

4
− 2
√

2)c+ (
1

4
−
√

2)b+
1

4
a+

1

4
− 3
√

2, c̃4(δ) = 8c+
56

3
.

Now, we will use the above coefficients and apply Theorem 3.6, to discuss other
distributions of limit cycles of system (Hε).

1. By solving b0(δ) = b1(δ) = b2(δ) = 0 we obtain a = b = c = 0. If we take
δ0 = (0, 0, 0), we obtain b3(δ0) = 5

4π, c1(δ0) = 16
693 then b3(δ0)c1(δ0) > 0, and

1−sgn(M(h1,δ0)M(h2,δ0))
2 = 0 for h1 = ε1, h2 = −ε2 with ε1 and ε2 positive and

very small. Note that rank
(
∂(b0,b1,b2)
∂(a,b,c)

)
= 3 and by Theorem 3.6 there exists

some (a, b, c, ε) near (0, 0, 0, 0) such that system (Hε) has 3 limit cycles near
the center γ0, see Fig. 2(a).

2. By solving b0(δ) = b1(δ) = c1(δ) = 0 we obtain a = b = 0, c = − 5
11 . Then

if we take δ0 = (0, 0,− 5
11 ), we obtain b2(δ0) = − 5

11π, c2(δ0) = − 8
11

4
√

8 then

b2(δ0)c2(δ0) > 0, and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 0 for h1 = ε1, h2 = −ε2 with

ε1 and ε2 positive and very small. Note that rank
(
∂(b0,b1,c1)
∂(a,b,c)

)
= 3 and by

Theorem 3.6 there exists some (a, b, c, ε) near (0, 0,− 5
11 , 0) such that system

(Hε) has 3 limit cycles, 2 limit cycles are near the center γ0 and 1 limit cycle
is near the heteroclinic loop γ 1

8
, see Fig. 2(b).

3. By solving b0(δ) = c1(δ) = c2(δ) = 0 we obtain a = 0, b = 3
11 , c = − 14

11 . Then

if we take δ0 = (0, 3
11 ,−

14
11 ), we obtain b1(δ0) = 3

11π, c3(δ0) = − 8
11

√
2 then

b1(δ0)c3(δ0) < 0, and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 1 for h1 = ε1, h2 = −ε2 with

ε1 and ε2 positive and very small. Note that rank
(
∂(b0,c1,c2)
∂(a,b,c)

)
= 3 and by

Theorem 3.6 there exists some (a, b, c, ε) near (0, 3
11 ,−

14
11 , 0) such that system

(Hε) has 4 limit cycles, 1 limit cycle is near the center γ0, 2 limit cycle are
near the heteroclinic loop γ 1

8
and 1 limit cycle is surrounding the center γ0,

(between the center γ0 and the heteroclinic loop γ 1
8
), see Fig. 2(c).

4. By solving c1(δ) = c2(δ) = c3(δ) = 0 we obtain a = − 1
11 , b = 13

11 , c = − 23
11 .

Then if we take δ0 = (− 1
11 ,

13
11 ,−

23
11 ), we obtain b0(δ0) = − 2

11π, c4(δ0) = 64
33

then b1(δ0)c3(δ0) < 0, and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 1 for h1 = ε1, h2 = −ε2

with ε1 and ε2 positive and very small. Note that rank
(
∂(c1,c2,c3)
∂(a,b,c)

)
= 3 and

by Theorem 3.6 there exists some (a, b, c, ε) near (− 1
11 ,

13
11 ,−

23
11 , 0) such that

system (Hε) has 4 limit cycles, 3 limit cycles are near the heteroclinic loop γ 1
8

and 1 limit cycle is surrounding the center γ0, see Fig. 2(d).

5. By solving b0(δ) = b1(δ) = 0, we obtain a = 0, b = 0. Then if we take δ0 =
(0, 0, c), we have b2(δ0) = cπ, c1(δ0) = 16

693 + 16
315 . If we fix c ∈ (− 5

11 , 0), then
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Distribution of limit cycles bifurcated from the period annulus of system
(Hε).

b2(δ0)c1(δ0) < 0, and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 1 for h1 = ε1 and h2 = −ε2

with ε1 and ε2 positive and very small. Note that rank
(
∂(b0,b1)
∂(a,b,c)

)
= 2 and

by Theorem 3.6, there exists some (a, b, c, ε) near (0, 0, c, 0) for c ∈ (− 5
11 , 0),

such that system (Hε) has 3 limit cycles, 2 limit cycles are near the center γ0,
1 limit cycle is surrounding the center γ0, see Fig. 2(e).

6. By solving b0(δ) = c1(δ) = 0, we obtain a = 0, b = − 5
33 −

1
3c. Then

if we take δ0 = (0,− 5
33 −

1
3c, c), we have b1(δ0) = −( 5

33 + 1
3c)π, c2(δ0) =

− 4
3

4
√

8( 28
33 + 2

3c). If we fix c ∈ (−∞,− 14
11 ) ∪ (− 5

11 ,∞), then b1(δ0)c2(δ0) < 0,

and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 1 for h1 = ε1 and h2 = −ε2 with ε1 and ε2 posi-

tive and very small. Note that rank
(
∂(b0,b1)
∂(a,b,c)

)
= 2 and by Theorem 3.6, there

exists some (a, b, c, ε) near (0,− 5
33 −

1
3c, c, 0) for c ∈ (−∞,− 14

11 ) ∪ (− 5
11 ,∞)

and ε positive and very small, such that system (Hε) has 3 limit cycles, 1
limit cycles is near the center γ0, 1 limit cycles is near the heteroclinic loop
γ 1

8
and 1 limit cycle is surrounding the center γ0, see Fig. 2(f).

7. By solving c1(δ) = c2(δ) = 0, we obtain a = 14
99 + 1

9c, b = − 113
99 −

10
9 c.

Then if we take δ0 = ( 14
99 + 1

9c,−
113
99 −

10
9 c, c), we have b0(δ0) = 2( 14

99 +
1
9c)π, c3(δ0) = −

√
2( 8

9c + 184
99 ). If we fix c ∈ (−∞,− 23

11 ) ∪ (− 14
11 ,∞), then

b0(δ0)c3(δ0) < 0,and 1−sgn(M(h1,δ0)M(h2,δ0))
2 = 1 for h1 = ε1 and h2 = −ε2
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with ε1 and ε2 positive and very small. Note that rank
(
∂(b0,b1)
∂(a,b,c)

)
= 2 and by

Theorem 3.6, there exists some (a, b, c, ε) near ( 14
99 + 1

9c,−
113
99 −

10
9 c, c, 0) for

c ∈ (−∞,− 23
11 ) ∪ (− 14

11 ,∞), such that system (Hε) has 3 limit cycles, 2 limit
cycles are near the heteroclinic loop γ 1

8
and 1 limit cycle is surrounding the

center γ0, see Fig. 2(g).
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