For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 2, Number 4, 2012, Pages 381-394                                                                DOI:10.11948/2012028
Adomian polynomials: A powerful tool for iterative methods of series solution of nonlinear equations
Ahmed Elsaid
Keywords:Adomian polynomials
Abstract:
      In this article, we illustrate how the Adomian polynomials can be utilized with different types of iterative series solution methods for nonlinear equations. Two methods are considered here: the differential transform method that transforms a problem into a recurrence algebraic equation and the homotopy analysis method as a generalization of the methods that use inverse integral operator. The advantage of the proposed techniques is that equations with any analytic nonlinearity can be solved with less computational work due to the properties and available algorithms of the Adomian polynomials. Numerical examples of initial and boundary value problems for differential and integro-differential equations with different types of nonlinearities show good results.
PDF      Download reader