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ADOMIAN POLYNOMIALS: A POWERFUL
TOOL FOR ITERATIVE METHODS OF SERIES

SOLUTION OF NONLINEAR EQUATIONS

A. Elsaid

Abstract In this article, we illustrate how the Adomian polynomials can
be utilized with different types of iterative series solution methods for nonlin-
ear equations. Two methods are considered here: the differential transform
method that transforms a problem into a recurrence algebraic equation and
the homotopy analysis method as a generalization of the methods that use
inverse integral operator. The advantage of the proposed techniques is that e-
quations with any analytic nonlinearity can be solved with less computational
work due to the properties and available algorithms of the Adomian polynomi-
als. Numerical examples of initial and boundary value problems for differential
and integro-differential equations with different types of nonlinearities show
good results.
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1. Introduction

The Adomian decomposition method (ADM) [2] and [3] has been used to give
analytic approximate solution for a large class of linear and nonlinear functional
equations. Consider the standard nonlinear operator equation

Pu+Ru+Qu = g, (1.1)

where P is the highest order derivative which is assumed to be easily invertible, R
is a linear differential operator of order less than P , Q is nonlinear operator, and
g is the source term. The standard ADM defines the solution u by the series

u =
∞∑
k=0

uk, (1.2)

and replaces the nonlinear term by the series

Qu =

∞∑
n=0

An, (1.3)
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where An are known as the Adomian polynomials determined formally from the
relation

An =
1

n!

[
dn

dλn
[Q(

∞∑
i=0

λiui)]

]
λ=0

. (1.4)

Then, the components u0, u1, u2, . . . , are determined recursively by using the
relation {

u0 = v,
uk+1 = −P−1Ruk − P−1Ak, k ≥ 0.

(1.5)

A great deal of interest has been focused to develop practical techniques that calcu-
late Adomian polynomials without any need for formula (1.4) introduced by Ado-
mian. Now the Adomian polynomials are obtained via several fast algorithms (see
[6]-[8] and the references within). Also, the Adomian polynomials have been used
to approximate nonlinear terms with other iterative methods [10].

This work illustrates how the Adomian polynomials can be integrated in the
well known series solution methods for nonlinear differential equations (DEs). This
is accomplished by utilizing these polynomials with two methods that represent two
categories of iterative series solution methods. The first category is represented by
the differential transform method (DTM) [17] which yields the Taylor series of the
solution via algebraic recurrence relation. The second category constitute of the
methods that use inverse integral operator and we choose from them the homotopy
analysis method (HAM) [13]-[15] as many other methods are considered special
cases of it [1]. The main advantage of utilizing the Adomian polynomials with
these techniques is that nonlinear DEs can be easily solved with less computational
work for any analytic nonlinearity due to the properties and available algorithms of
the Adomian polynomials.

2. DTM with Adomian polynomials

The differential transformation of an analytic function u(t) is defined by

U(k) =
1

k!
[
dku(t)

dtk
]t=t0 , k = 1, 2, ... . (2.1)

The inverse differential transformation of U(k) is defined by

u(t) =
∞∑
k=0

U(k)(t− t0)
k. (2.2)

In real applications, function u(t) is expressed by the truncated finite series of the
form

u(t) =

N∑
k=0

U(k)(t− t0)
k. (2.3)

Some basic properties of the differential transformation are as follows [17]. Let u(t),
v(t) and w(t) be three uncorrelated functions of time t and U(k), V (k), and W (k)
be their corresponding differential transformations. Then:

(1) If u(t) = v(t)± w(t), then U(k) = V (k)±W (k).

(2) If u(t) = av(t), then U(k) = aV (k), where a is a constant.
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(3) If u(t) = v(t)w(t), then U(k) =
k∑

ki=0

V (ki)W (k − ki).

(4) If u(t) = tn, then U(k) = δ(k − n) where δ(k − n) = {1 k=n
0 k ̸=n.

(5) If u(t) = dn

dtn v(t), then U(k) = (k+n)!
k! V (k + n).

(6) If u(t) =
t∫
0

v(x)dx, then U(k) = V (k−1)
k .

To illustrate how the Adomian polynomials are utilized with the DTM, consider a
nonlinear function f(u). Then, the Adomian polynomials approximating f(u) can
be arranged in the form

A0 = f(u0)

A1 = u1f
(1)(u0)

A2 = u2f
(1)(u0) +

1

2!
u2
1f

(2)(u0)

A3 = u3f
(1)(u0) + u1u2f

(2)(u0) +
1

3!
u3
1f

(3)(u0)

A4 = u4f
(1)(u0) + (u1u3 +

1

2!
u2
2)f

(2)(u0) +
1

2!
u2
1u2f

(3)(u0) +
1

4!
u4
1f

(4)(u0)

...

The differential transform components of f(u) can be written in the following form
(for t0 = 0 )

F (0) = f(u(0))

= f(U(0)),

F (1) =
d

dt
f(u(t))

∣∣∣∣
t=0

= u′(0)f (1)(u(0))

= U(1)f (1)(U(0)),

F (2) = U(2)f (1)(U(0)) +
1

2!
(U(1))2f (2)(U(0)),

F (3) = U(3)f (1)(U(0)) + U(1)U(2)f (2)(U(0)) +
1

3!
(U(1))3f (3)(U(0)),

F (4) = U(4)f (1)(U(0)) + (U(1)U(3) +
1

2!
(U(2))2)f (2)(U(0))

+
1

2!
(U(1))2U(2)f (3)(U(0)) +

1

4!
(U(1))4f (4)(U(0)),

...

Next, we consider the nonlinear function g(u(n)) where u(n) denotes the nth deriva-
tive of u. Then, the Adomian polynomials of g(u(n)) are given by

A0 = g(u
(n)
0 )

A1 = u
(n)
1 g(1)(u

(n)
0 )

A2 = u
(n)
2 g(1)(u

(n)
0 ) +

1

2!
(u

(n)
1 )2g(2)(u

(n)
0 )
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A3 = u
(n)
3 g(1)(u

(n)
0 ) + u

(n)
1 u

(n)
2 g(2)(u

(n)
0 ) +

1

3!
(u

(n)
1 )3g(3)(u0)

A4 = u
(n)
4 g(1)(u

(n)
0 ) + (u

(n)
1 u

(n)
3 +

1

2!
(u

(n)
2 )2)g(2)(u

(n)
0 )

+
1

2!
(u

(n)
1 )2u

(n)
2 g(3)(u

(n)
0 ) +

1

4!
(u

(n)
1 )4g(4)(u

(n)
0 )

...

The differential transform components of the nonlinear function g(u(n)) have the
following form

G(0) = g(u(n)(t))
∣∣∣
t=0

,

= g(n! U(n)).

G(1) = (n+ 1)! U(n+ 1)g(1)(n! U(n)),

G(2) =
(n+ 2)!

2!
U(n+ 2)g(1)(n! U(n))

+
1

2!
((n+ 1)! U(n+ 1))2g(2)(n! U(n)),

G(3) =
(n+ 3)!

3!
U(n+ 3)g(1)(n! U(n))

+(n+ 1)! U(n+ 1)
(n+ 2)!

2!
U(n+ 2)g(2)(n! U(n))

+
1

3!
((n+ 1)! U(n+ 1))3g(3)(n! U(n)),

G(4) =
(n+ 4)!

4!
U(n+ 4)g(1)(n! U(n))

+((n+ 1)! U(n+ 1)
(n+ 3)!

3!
U(n+ 3)

+
1

2!
(
(n+ 2)!

2!
U(n+ 2))2)g(2)(n! U(n))

+
1

2!
((n+ 1)! U(n+ 1))2(

(n+ 2)!

2!
U(n+ 2))g(3)(n! U(n))

+
1

4!
((n+ 1)! U(n+ 1))4g(4)(n! U(n)),

...

Then, by comparing the differential transform components of the considered nonlin-
ear functions with their Adomian polynomials, we propose the following algorithm.
Instead of computing the differential transformation of nonlinear terms, it is directly

substituted by Ãk which is obtained by replacing each uk and u
(n)
k in the Adomian

polynomial component Ak by U(k) and (k+n)!
k! U(k+n), respectively. This idea was

initiated with fractional differential transform method in [9].

3. HAM with Adomian polynomials

Consider the following equation

N [u(t)] = 0, (3.1)
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where N is a nonlinear operator, u(t) is an unknown function and t denotes the
independent variable. By generalizing the traditional homotopy method, Liao [14]
constructs the so-called zero-order deformation equation

(1− p)L[ϕ(t; p)− u0(t)] = p~H(t)N [ϕ(t; p)], (3.2)

where p ∈ [0, 1] is an embedding parameter, ~ is a nonzero auxiliary parameter,
H(t) is an auxiliary function, L is an auxiliary linear operator, u0(t) is an initial
guess of u(t) and ϕ(t; p) is an unknown function. It is important to note that we
have great freedom to choose auxiliary objects such as ~ and L in HAM. Obviously,
when p = 0 and p = 1, we have ϕ(t; 0) = u0(t), ϕ(t; 1) = u(t), respectively. Thus,
as p increases from 0 to 1, the solution ϕ(t; p) varies from the initial guess u0(t) to
the solution u(t). Expanding ϕ(t; p) in Taylor series with respect to p, one has

ϕ(t; p) = u0(t) +
∞∑

m=1

um(t)pm, (3.3)

where

um(t) =
1

m!

∂mϕ(t; p)

∂pm
|p=0 . (3.4)

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ and
the auxiliary function are so properly chosen, then, as proved by Liao [14], the series
(3.3) converges at p = 1 and one has

u(t) = u0(t) +
∞∑

m=1

um(t), (3.5)

which must be one of solutions of the original nonlinear equation, as proved by
Liao[14]. Using definition (3.4), the governing equation of the HAM can be deduced
from the zero-order deformation equation (3.2) as follows. Define the vector

−→u n = {u0(t), u1(t), u2(t), ..., un(t)}. (3.6)

Differentiating equation (3.2) m times with respect to the embedding parameter
p and then setting p = 0 and finally dividing them by m!, we have the so-called
mth-order deformation equation

L[um(t)− χmum−1(t)] = ~H(t)ℜm[−→u m−1(t)], (3.7)

where

ℜm[−→u m−1] =
1

(m− 1)!

∂m−1N [ϕ(t; p)]

∂pm−1
|p=0 (3.8)

and

χm =

{
0,m ≤ 1,
1,m > 1.

(3.9)

Applying the inverse operator L−1 to both sides of (3.7), um(t) can be easily ob-
tained.

In the suggested approach here, the nonlinear term in ℜm+1[
−→u m] is replaced by

the mth term of the Adomian polynomials series that approximates it.
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4. Examples

In this section, the proposed schemes are applied to solve initial and boundary value
problems for ordinary differential and integro-differential equations with different
types of nonlinearity. The Adomian polynomials are generated by using the al-
gorithm based on corollary 3 in [6]. Symbolic computations are carried out using
Mathematica.

Example 4.1. Consider the quadratic Riccati differential equation [4]{
du
dt = 2u− u2 + 1,
u(0) = 0.

(4.1)

First we solve it using the DTM with Adomian polynomials. This yields the
recurrence scheme{

(k + 1)U(k + 1) = 2U(k)− Ãk + δ(k), k = 0, 1, 2, ...,
U(0) = 0,

(4.2)

where Ãk are obtained from the Adomian polynomials of the nonlinear term u2 as
illustrated in Table (1)

Table 1.

Ak and Ãk for the power nonlinearity u2.
k 0 1 2 3
Ak u2

0 2u0u1 u2
1 + 2u0u2 2u0u3 + 2u1u2

Ãk [U(0)]2 2U(0)U(1) [U(1)]2 + 2U(0)U(2) 2U(0)U(3) + 2U(1)U(2)

and so on. The following terms of the solution series are obtained: U(1) = 1, U(2) =
1, U(3) = 1

3 , U(4) = −1
3 , U(5) = −7

15 , U(6) = −7
45 , . . .. Substitute these values in the

inverse differential transform, we obtain

u(t) = t+ t2 +
t3

3
− t4

3
− 7

15
t5 − 7

45
t6 + ..., (4.3)

which is the Taylor series of the exact solution of problem (4.1) given by u(t) =

1 +
√
2 tanh(

√
2t+ 1

2 log(
√
2−1√
2+1

)).

Now, we use the HAM with Adomian polynomials. Some straightforward choices
for this problem are the following: the auxiliary linear operator is

L[ϕ] =
d

dt
(ϕ), (4.4)

and operator N in equation (3.2) is chosen as

N [ϕ] =
d

dt
(ϕ)− 2ϕ+ ϕ2 − 1. (4.5)

Then, the mth-order deformation equation for this problem is given by

d

dt
[um(t)− χmum−1(t)] = ~H(t)ℜm[−→u m−1(t)], (4.6)



Adomian polynomials with DTM and HAM 387

where ℜm[−→u m−1(t)] is given by

ℜm[−→u m−1(t)] =
d

dt
[um−1(t)]− 2um−1(t) +Am−1 − (1− χm), (4.7)

where Ai are the Adomian polynomials of the nonlinear term u2. We choose H(t) =
1 and u0(t) = t. Then, by applying the inverse integral operator, the following terms
are obtained

u0(t) = t,

u1(t) = ~(−t2 + t3

3 ),

u2(t) = ~(1 + ~)(−t2 + t3

3 ) + ~2( 2t
3

3 − 2t4

3 + 2t5

15 ),
...

and an approximate solution is obtained as a partial sum of these terms. Figure (1)
shows the ~-curves of 10th order HAM solution at different values of time and the
horizontal line segment that denotes the valid region of ~ that guarantees conver-
gence. We choose ~ = −0.25 and graph it along with exact solution and ~ = −0.5
in Figure (2).

-2.0 -1.5 -1.0 -0.5
h

-6

-4

-2

2

4

6

u

t=2.75

t=1

t=0.75

Figure 1. The ~-curves of 10th order HAM solution of Example (1).
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0.5

1.0

1.5
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3.0
u

h=-0.25

h=-0.5

Exact

Figure 2. Exact and 10th order HAM solution of Example (1).
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Example 4.2. Consider the Lane–Emden type equation [16]{
u′′ + 2

tu
′ + 8eu + 4eu/2 = 0,

u(0) = 0, u′(0) = 0.
(4.8)

For the DTM with Adomian polynomials, the recurrence scheme for this problem
for non-negative integer k is given by

∑k
j=0 δ(j − 1)[W (k − j) + Ãk−j ] + 2(k + 1)U(k + 1) = 0,

U(0) = 0, U(1) = 0,
(4.9)

where W (k) = (k + 1)(k + 2)U(k + 2) and Ãk are obtained from the Adomian
polynomials for the nonlinear term 8eu + 4eu/2 as shown in Table (2)

Table 2.

Ak and Ãk for the exponential nonlinearity 8eu + 4eu/2.
k 0 1

Ak 4e
u0
2 + 8eu0 u1(2e

u0
2 + 8eu0)

Ãk 4e
U(0)

2 + 8eU(0) U(1)(2e
U(0)

2 + 8eU(0))

Table 2. ctd.

k 2

Ak 2u2(4e
u0 + e

u0
2 ) + u2

1(4e
u0 + 1

2e
u0
2 )

Ãk 2U(2)(4eU(0) + e
U(0)

2 ) + [U(1)]2(4eU(0) + 1
2e

U(0)
2 )

and so on. The following terms are obtained: U(2) = −2, U(3) = 0, U(4) =
1, U(5) = 0, U(6) = − 2

3 , U(7) = 0, U(8) = 1
2 , . . . which yields the series solution

u(t) = −2t2 + t4 − 2

3
t6 +

1

2
t8..., (4.10)

which is the Taylor series of problem (4.8) exact solution given by u(t) = 2 ln[1+t2].
To solve the problem using the HAM with Adomian polynomials, we choose

L[ϕ] =
d2

dt2
(ϕ) (4.11)

and

N [ϕ] =
d2

dt2
(ϕ) +

2

t

d

dt
ϕ+ 8eϕ + 4eϕ/2. (4.12)

Then, the mth-order deformation equation for this problem is given by

d2

dt2
[um(t)− χmum−1(t)] = ~H(t)ℜm[−→u m−1(t)], (4.13)

where ℜm[−→u m−1(t)] is given by

ℜm[−→u m−1(t)] =
d2

dt2
[um−1(t)] +

2

t
um−1(t) +Am−1, (4.14)

where Ai are the Adomian polynomials for the nonlinear term 8eu + 4eu/2. Take
H(t) = 1 and u0(t) = 0. Then, by applying the inverse double integral operator,
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the following terms are obtained

u0(t) = 0,

u1(t) = 6~t2,
u2(t) = 6~(1 + ~)t2 + ~2

(
12t2 + 5t4

)
,

...

Figure (3) shows the ~-curves of 10th order HAM solution at different values of
time. We choose ~ = −0.15 and graph it along with exact solution and ~ = −0.25
in Figure (4).

-0.8 -0.6 -0.4 -0.2 0.2
h

-4

-3

-2

-1

1

2

u

t=1.8

t=1

t=0.2

Figure 3. The ~-curves of 10th order HAM solution of Example (2).
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Exact

h=-0.15

h=-0.25

Figure 4. Exact and 10th order HAM solution of Example (2).

Example 4.3. Consider the nonlinear integro-differential equation [11]

u′ = 1 +

x∫
0

u(t)u′(t)dt, 0 ≤ x ≤ 1. (4.15)

The recurrence scheme of the DTM is given by{
(k + 1)U(k + 1) = δ(k) + Ãk−1

k , k = 1, 2, ...,

U(0) = 0, U(1) = 1,
(4.16)
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where Ãk are obtained from the Adomian polynomials of the nonlinear term uu′ by

replacing each u
(n)
k by (k+n)!

k! U(k + n) as illustrated in Table (3)

Table 3.

Ak and Ãk for the product nonlinearity uu′.

k 0 1 2
Ak u′

0u0 u′
1u0 + u′

0u1 u′
2u0 + u′

1u1 ++u′
0u2

Ãk U(0)U(1) U(0)U(2) + [U(1)]2 3U(0)U(3) + 3U(2)U(1)

and so on. The following terms are obtained: U(3) = 1
6 , U(5) = 1

30 , U(7) =
17

2520 , U(9) = 31
22680 · · · , and zero for even index terms. Substitute these values in

the inverse differential transform, we obtain

u(x) = x+
x3

3
+

x5

30
+

17x7

2520
+

31x9

22680
+ ..., (4.17)

which is the Taylor series of the exact solution of problem (4.15) given by u(x) =√
2 tan( x√

2
).

Now using the HAM with Adomian polynomials, we choose

L[ϕ] =
d

dx
ϕ(x), (4.18)

N [ϕ] =
d

dx
ϕ(x)− 1−

x∫
0

ϕ(t)
d

dt
ϕ(t)dt. (4.19)

Then, the mth-order deformation equation for this problem is given by

d

dx
[um(x)− χmum−1(x)] = ~H(x)ℜm[−→u m−1(x)], (4.20)

where ℜm[−→u m−1(x)] is given by

ℜm[−→u m−1(x)] =
d

dx
[um−1(x)]−

x∫
0

Am−1(t)dt− (1− χm), (4.21)

where Ai are the Adomian polynomials for the nonlinear term uu′. Take H(x) = 1
and u0(x) = x. Then, by applying the inverse integral operator, the following terms
are obtained

u0(x) = x,

u1(x) = −~
6x

3,

u2(x) =
−~(1+~)

6 x3 + ~2

30x
5,

...

Figure (5) shows the ~-curves of 20th order HAM solution at different values in the
domain of the variable x which illustrates a wide valid region of ~ approximately
between -0.2 < ~ < −2. The graphs of the exact and the HAM approximate
solutions at different values of ~ of this problem are close. Thus we show in Table
(4) the relative error of the approximate solution at some values of ~ near the middle
point of the valid region of ~.
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h

-800

-600

-400

-200

u
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x=0.8

x=0.25

Figure 5. The ~-curves of 20th order HAM solution of Example (3).

Table 4.

The relative error of the 20th order HAM solution of Example (3) at some values of ~
x ~ = −0.85 ~ = −1 ~ = −1.15
0.1 3.78 ∗ 10−7 3.97 ∗ 10−9 −3.70 ∗ 10−7

0.2 6.23 ∗ 10−6 2.55 ∗ 10−7 −5.72 ∗ 10−6

0.3 0.00003 2.92 ∗ 10−6 −0.00002
0.4 0.00011 0.00001 −0.00007
0.5 0.00029 0.00006 −0.00016
0.6 0.00066 0.00019 −0.00028
0.7 0.00136 0.00049 −0.00037
0.8 0.00258 0.00111 −0.00035
0.9 0.00463 0.00231 −5.88 ∗ 10−6

1 0.00794 0.00446 0.000980

Example 4.4. Consider the nonlinear boundary value problem{
u′′ = e−2t(u′)2, 0 < t < 1,
u(0) = 1, u(1) = e2.

(4.22)

When this type of problems is solved using DTM or HAM, a well known approach
is to assume that u′(0) = α, where α is a constant that is computed using the given
boundary condition.

First we solve problem (4.22) using the DTM with Adomian polynomials. This
yields the following recurrence scheme (k + 1)(k + 2)U(k + 2) =

k∑
l=0

b(l)Ãk−l, k = 0, 1, 2, ...,

U(0) = 0, U(1) = α,

(4.23)

where b(k) are the differential transform components of e−2t and Ãk are obtained
from the Adomian polynomials of the nonlinear term (u′)2 as illustrated in Table
(5)

Table 5.

Ak and Ãk for the nonlinearity term (u′)2.
k 0 1 2 3
Ak (u′

0)
2 2u′

0u
′
1 (u′

1)
2 + 2u′

0u
′
2 2u′

0u
′
3 + 2u′

1u
′
2

Ãk [U(1)]2 4U(1)U(2) [2U(2)]2 + 6U(1)U(3) 8U(1)U(4) + 12U(2)U(3)
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and so on. The following terms of the solution series are obtained: U(2) =
1
2α

2, U(3) = 1
3α

2(α − 1), U(4) = 1
4α

2(α − 1.57735)(α − 0.42265), . . .. We com-
pute the inverse differential transform with nine components and substitute the
boundary condition to obtain a nonlinear equation in α which yields α = 2.000026.
Substitute this value of α in the inverse differential transform series solution, we
obtain

u(t) = 1 + 2.00003t+ 2.00005t2 + 1.3334t3 + 0.666736t4

+0.266722t5 + 0.0889257t6 + ...,
(4.24)

which is an approximation to the Taylor series of the exact solution of problem (4.1)
given by u(t) = e2t. Figure (6) shows a comparison between the exact solution and
the DTM solution with 9 components.

0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

6

7

u

Exact

DTM

Figure 6. The exact and the 9 components DTM solution of Example (4).

Now, we use HAM with Adomian polynomials. The auxiliary linear operator is

L[ϕ] =
d2

dt2
(ϕ), (4.25)

and the operator N in equation (3.2) is chosen as

N [ϕ] =
d2

dt2
(ϕ)− e−2t(ϕ′)2. (4.26)

Then, the mth-order deformation equation for this problem is given by

d2

dt2
[um(t)− χmum−1(t)] = ~H(t)ℜm[−→u m−1(t)], (4.27)

where ℜm[−→u m−1(t)] is given by

ℜm[−→u m−1(t)] =
d2

dt2
[um−1(t)]− e−2tAm−1, (4.28)

where Ai are the Adomian polynomials of the nonlinear term (u′)2. We choose
H(t) = 1 and u0(t) = 1+αt. Then, by applying the inverse double-integral operator,
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the following terms are obtained

u0(t) = 1 + αt,

u1(t) =
1
4~α

2(−2t− 2sinh2(t) + sinh(2t)),

u2(t) =
1
16e

−4t~2α3(−1 + 4e2t + e4t(4t− 3)) + 1
4~(1 + ~)α2(−2t− 2sinh2(t)

+sinh(2t)),
...

The boundary condition is substituted in the HAM series solution with 7 terms
to obtain a nonlinear equation in α and ~. An approach to find the appropriate
values of these two parameters is to draw an ~ curve for the unknown parameter
α [12]. Figure (7) shows the horizontal segment that denotes the valid region of ~
that guarantees convergence. We choose ~ = −2.4 for which α = 2.00062. Figure
(8) shows the 7th order HAM solution for these values and some other values of ~
and α along with the exact solution of this problem.
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Figure 7. The ~-curves of 7th order HAM solution with the parameter α for Example
(4).
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Figure 8. Exact and 7th order HAM solution of Example (4).

5. Conclusion

The use of Adomian polynomials to approximate nonlinear terms in iterative tech-
niques is illustrated. Two approaches are proposed to utilize these polynomials with
DTM and HAM. This widens the applications of these methods to deal with differ-
ent types of nonlinearities and benefits from the fact that Adomian polynomials are
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already computed via various fast algorithms. The numerical simulations carried
out for nonlinear differential and integro-differential equations show good results.
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