For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 2, Number 2, 2012, Pages 213-240                                                                DOI:10.11948/2012016
Evans functions and bifurcations of standing wave solutions in delayed synaptically coupled neuronal networks
Linghai Zhang
Keywords:Delayed synaptically coupled neuronal networks
Abstract:
      Consider the following nonlinear singularly perturbed system of integral differential equations &\frac{\partial u}{\partial t}+f(u)+w\\ =&(\alpha-au)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau,\\ &\frac{\partial w}{\partial t}=\varepsilon[g(u)-w], and the scalar integral differential equation &\frac{\partial u}{\partial t}+f(u)\\ =&(\alpha-a u)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau. There exist standing wave solutions to the nonlinear system. Similarly, there exist standing wave solutions to the scalar equation. The author constructs Evans functions to establish stability of the standing wave solutions of the scalar equation and to establish bifurcations of the standing wave solutions of the nonlinear system.
PDF      Download reader