For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 2, Number 1, 2012, Pages 11-28                                                                DOI:10.11948/2012002
Cauchy problem for the Zakharov System Arising from Ion-Acoustic Modes with low regularity data
Boling Guo,Lijia Han,Zaihui Gan
Keywords:Zaklarov system
Abstract:
      We prove local well-posedness results for the Zakharov System Arising from Ion-Acoustic Modes in two spacial dimension with large initial data in low regularity Sobolev space \(   (\dot{H}^1 \bigcup H^{\frac{1}{2}})\times L^2 \times H^{-1}  \).  Using ”derivative sharing”, the local well-posedness results in \( (\dot{H}^1 \bigcup H^{\frac{1}{2}-\delta})\times H^{\delta} \times H^{-1+\delta}\)  are also obtained, for any  0 \(\leq \delta \leq 1/2 \).
PDF      Download reader