For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 1, Number 3, 2011, Pages 299-313                                                                DOI:10.11948/2011021
Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp
Ali Atabaigi,Hamid R. Z. Zangeneh
Keywords:Hyper-elliptic Hamiltonian system
Abstract:
      This paper deals with small perturbations of a class of hyper-elliptic Hamiltonian system, which is a Li é nard system of the form \(\dot{x}=y,\)  \(\;\dot{y}=Q_1(x)+\varepsilon yQ_2(x)\) with \(Q_1\) and \(Q_2\) polynomials of degree 4 and 3, respectively. It is shown that this system can undergo degenerated Hopf bifurcation and Poincar é bifurcation, which emerge at most three limit cycles for \(\varepsilon\) sufficiently small.
PDF      Download reader