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BIFURCATION OF LIMIT CYCLES IN SMALL
PERTURBATIONS OF A CLASS OF

HYPER-ELLIPTIC HAMILTONIAN SYSTEMS
OF DEGREE 5 WITH A CUSP

Ali Atabaigia and Hamid R. Z. Zangeneha,†

Abstract This paper deals with small perturbations of a class of hyper-
elliptic Hamiltonian system, which is a Liénard system of the form ẋ = y, ẏ =
Q1(x)+ εyQ2(x) with Q1 and Q2 polynomials of degree 4 and 3, respectively.
It is shown that this system can undergo degenerated Hopf bifurcation and
Poincaré bifurcation, which emerge at most three limit cycles for ε sufficiently
small.
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1. Introduction

Consider a planar Hamiltonian system of the form

ẋ = y, ẏ = p(x), (1)

with the Hamiltonian function

H(x, y) =
y2

2
+ Pm(x), Pm(x) = −

∫ x

0

p(s)ds,

where Pm(x) is a real polynomial in x of degree m. If the level set {H = h} contains
ovals and all critical points are real, then the level sets are elliptic for m = 3, 4 and
hyper-elliptic for m ≥ 5. In the progress to solve Hilbert’s 16th problem, in recent
years many studies have been devoted to the limit cycles bifurcation for elliptic
Hamiltonian systems. To the best of our knowledge most studies in this direction
concern the elliptic case. For instance, in a series of papers Dumortier and Li made
a complete study on the limit cycles bifurcation for elliptic Hamiltonian systems
(see [1, 2, 3]).
In this paper, we study a small perturbation of Hamiltonian vector field with a
hyper-elliptic Hamiltonian of degree five. The topological classification of hyper-
elliptic Hamiltonian systems of degree five was given first by Gavrilov and Iliev
in [5]. There are ten topologically different phase portraits for the hyper-elliptic
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Hamiltonian system. Wang and Xiao in [11] considered one of these cases and
made a complete study on small perturbations of Hamiltonian vector field with a
hyper-elliptic Hamiltonian having a nilpotent saddle. They showed that this system
can undergo degenerated Hopf bifurcation and Poincaré bifurcation, which emerges
at most three limit cycles in the plane. Furthermore they showed that the limit
cycles can encompass only an equilibrium inside, i.e. the configuration (3, 0) of
limit cycles can appear for some values of parameters. Recently, Yang and Han
in [13] studied systems of these classes with a cuspidal loop and a homoclinic loop
and they obtained new results on the lower bound of the maximal number of limit
cycles for these systems.
Here we choose another class in [5] to study the number of limit cycles under a
small perturbation.

Consider the Hamiltonian system

ẋ = y, ẏ = x(x + 1)2(x− 2
3
), (H0)

with Hamiltonian function

H(x, y) =
1
2
y2 +

1
3

x2 +
1
9

x3 − 1
3

x4 − 1
5

x5, (2)

which has a cusp point C(−1, 0), a non-degenerate center O(0, 0), a hyperbolic
saddle S(2/3, 0) and a heteroclinic loop γ 4

45
(see Fig. 1). Inside γ 4

45
, all orbits {γh}

are closed,

γh : {(x, y) | H(x, y) = h, h ∈ (0,
4
45

)}.

By Xiao [12] in (1) one can assume

p(x) = −x(x− 1)(x− α)(x− β).

Hence according to the classification in [12], the system (H0) is the case corresponds
to α = 2

5 and β = 1 (up to a linear transformation).
We intend to study the following Liénard system which is a perturbation of (H0):

ẋ = y,

ẏ = x(x + 1)2(x− 2
3
) + ε(a + bx + cx2 + x3)y. (Hε)

Then associated to the given perturbation there exists the so-called first order Mel-
nikov function or the Abelian integral

I(h) =
∮

γh

(a + bx + cx2 + x3)ydx = aI0(h) + bI1(h) + cI2(h) + I3(h), (3)

where Ik(h) =
∮

γh
xkydx, and γh is oriented clockwise. Here 0 < ε � 1 and a, b

and c are real bounded parameters.
A limit cycle is an isolated periodic orbit in the set of periodic orbits. The Melnikov
function I(h) is a suitable tool for studying limit cycles of system (Hε). We recall
that a limit cycle of system (Hε) corresponds to an isolated zero of the Melnikov
function I(h). Our main result is the following:
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Figure 1: Level curves of Hamiltonian function in (1). γh for all h ∈ (0, 4/45) are periodic
orbits and γ4/45 is a heteroclinic orbit.

from which at most three limit cycles emerges in the plane. Furthermore they show that
the limit cycles can encompass only an equilibrium inside, i.e. the configuration (3, 0) of
limit cycles can appear for some values of parameters.
In this paper, we intend to study a Liénard system of type (4, 3) that is a small perturbation
of Hamiltonian vector field with a hyper-elliptic Hamiltonian of degree five. The topological
classification of hyper-elliptic Hamiltonian system of degree five was first given by Gavrilov
and Iliev in [5]. There are eleven different phase portraits for the hyper-elliptic Hamiltonian
system, which have the family of ovals. We study the number of limit cycles of one of these
classes under a small perturbation.
Consider the Hamiltonian system

ẋ = y,

ẏ = x(x + 1)2(x − 2/3), (H0)

with Hamiltonian function

H(x, y) = y
2
/2 + x

2
/3 + x

3
/9 − x

4
/3 − x

5
/5, (1)

which has a cusp point C(−1, 0), a non-degenerate center O(0, 0), a hyperbolic saddle
S(2/3, 0) and a heteroclinic loop γ4/45 (see Figure 1). Inside γ4/45, all orbits {γh} are
closed,

γh : {(x, y) | H(x, y) = h, h ∈ (0, 4/45)}

We intend to study a perturbation of (H0) of the form:

ẋ = y,

ẏ = x(x + 1)2(x − 2/3) + ε(a + bx + cx
2 + x

3)y, (Hε)

2

Figure 1. Level curves of Hamiltonian function in (2). For all h ∈ (0, 4/45), γh are
periodic orbit and γ4/45 is a heteroclinic orbit.

Main Theorem. System (Hε) can undergo degenerated Hopf bifurcation and
Poincaré bifurcation, which emerge at most three limit cycles for ε sufficiently small.
Moreover there are values of parameters (a, b, c) for which system (Hε) can have
three limit cycles.

We split our main theorem into three theorems and prove them in the sequel
as follows: In section 2, we consider the local stability of the equilibrium solution
of system (Hε), and we prove that system (Hε) can undergo degenerated Hopf
bifurcation which emerges at most three limit cycles in any compact region inside
the heteroclinic loop γ 4

45
of Hamiltonian system (H0). In Section 3, we show that

Abelian integrals I(h) of system (Hε) has the Chebyshev property, i.e. the least
upper bound of number (multiplicity taken into account) of zeros of I(h) is three.
This implies that system (Hε) can undergo Poincaré bifurcation which emerges at
most three limit cycles from this period annulus if I(h) is not identically zero.
In section 4, we study the asymptotic expansions of the Abelian integrals I(h) at the
center and the heteroclinic loop. By the asymptotic expansions of Abelian integrals
I(h) at the end points of open interval (0, 4/45), we show that there exist parameter
values such that I(h) has three isolated zeros .

2. Local stability analysis and Hopf bifurcation

In this section we will consider the local stability of equilibrium solutions of system
(Hε), and discuss the number of small limit cycles. We show that the system (Hε)
can undergo degenerated Hopf bifurcation which emerges at most three limit cycles
near equilibrium O(0, 0).
Clearly, system (Hε) always has three equilibria C(−1, 0), O(0, 0) and S(2/3, 0) for
each value of parameters (a, b, c). In the following lemma we give a detailed analysis
of all possible dynamics of these equilibria.
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Lemma 2.1. Consider system (Hε). Suppose 0 < ε � 1. Then equilibrium
S(2/3, 0) is a hyperbolic saddle, equilibrium O(0, 0) is a focus and C(−1, 0) is a
saddle-node or a cusp. More precisely we have:
(S) for all parameters (a, b, c) the equilibrium S(2/3, 0) is a hyperbolic saddle;
(Oi) if a 6= 0 and |εa| < 1, then O(0, 0) is a hyperbolic focus. And it is stable

(unstable) if a < 0 (a > 0);
(Oii) if a = 0 and 2c − b 6= 0, then O(0, 0) is a weak focus with order one. And it

is stable (unstable) if 2c− b < 0 (2c− b > 0);
(Oiii) if a = 0, 2c − b = 0 and c 6= −5/2, then O(0, 0) is a weak focus with order

two. It is stable (unstable) if 2c + 5 > 0 (2c + 5 < 0);
(Oiv) if a = 0, 2c − b = 0 and c = −5/2, then O(0, 0) is a stable weak focus with

order three;
(Ci) if c− b + a− 1 6= 0, then C(−1, 0) is a saddle-node;
(Cii) if c− b + a− 1 = 0, then C(−1, 0) is a cusp.

In order to prove the above lemma the following lemmas will appear to be useful
(see [7, 9])

Lemma 2.2. Consider the general Liénard-type system

ẋ = y − F (x), ẏ = −g(x). (4)

Suppose that F (x) and g(x) are smooth functions in a neighborhood of the origin,
and that

g(0) = F (0) = F ′(0) = 0, and g′(0) > 0.

Let G(x) =
∫ x

0
g(s)ds. Let α(x) = −x + O(x2) be such that G(α(x)) ≡ G(x) and

F (α(x))− F (x) =
∑

i≥1 Bix
i. Then the equilibrium (0, 0) of (4) is a multiple focus

of multiplicity k if Bj = 0, j = 1, 2, . . . , 2k, and B2k+1 6= 0. Furthermore, it is
locally stable (unstable) if B2k+1 < 0 (B2k+1 > 0, respectively).

Lemma 2.3. Consider the Liénard system

ẋ = y, ẏ = −g(x)− f(x)y, (5)

where f(x), g(x) are continuously differentiable functions on the open interval
(α, β). Suppose that
(i) there exists x0 ∈ (α, β) such that (x− x0)g(x) > 0 for x 6= x0,
(ii) define F (x) =

∫ x

x0
f(s)ds and G(x) =

∫ x

x0
g(s)ds; then the system of equations

F (u) = F (x), G(u) = G(x),

has no solution (u, x) with α < u < x0 < x < β.
Then system (5) has no closed orbits in the strip α < x < β.

Now we are ready to prove lemma 2.1.
Proof of lemma 2.1. The statements (S) and (Oi) can be proved by a straight-
forward calculation of the eigenvalues of system (Hε) at S(2/3, 0) and O(0, 0), re-
spectively.
To prove the statements (Oii)− (Oiv), we shall apply Lemma 2.2. First, using the
translations X = x, Y = y − ε( 1

2bx2 + 1
3cx3 + 1

4x4), we transform system (Hε) to
the following Liénard system

Ẋ = Y − F (X), Ẏ = −g(X),



Limit cycles bifurcation in a hyper-elliptic Hamiltonian system 303

where F (X) = −ε( 1
2bX2 + 1

3cX3 + 1
4X4), g(X) = −X(X + 1)2(X − 2

3 ). For
convenience, we still use x, y instead of X, Y , respectively. It is clear that F (x),
and g(x) are C∞ smooth functions and g(0) = F (0) = F ′(0) = 0 and g′(0) > 0. Let
G(x) =

∫ x

0
g(s)ds. A straightforward computation can verify that there exists a C∞

smooth function α(x) = −x− 1
3 x2 − 1

9 x3 − 19
135 x4 + O

(
x5
)
, such that G(α(x)) ≡

G(x). Here O(xk) stands for terms of higher order than xk−1. Performing a Taylor
expansion of function F (α(x))− F (x) at x = 0, we obtain

F (α(x))− F (x)

= ε

[
1
3

(2 c− b) x3 +
1
6

(2 c− b) x4 +
1
45

(10 c− 15− 8 b)x5

+
1

810
(184 c− 50− 137 b) x6 +

1
405

(−111 + 95 c− 22 b) x7 + O(x8)
]

.

Now, applying Lemma 2.2 we can obtain statements (Oii)− (Oiv). In the following
we study the equilibrium C(−1, 0). Moving C(−1, 0) to the origin, the system (Hε)
becomes

ẋ = y, ẏ = µy + h(x, y), (6)

where µ = ε(c− b + a− 1), and

h(x, y) =
5
3

x2 − 8
3

x3 + x4 + ε
(
(−2 c + b + 3) x + (c− 3) x2 + x3

)
y.

If c− b + a− 1 6= 0, then the eigenvalues of system (6) at (0, 0) are zero and µ 6= 0.
Therefore, (0, 0) is a degenerate equilibrium for (6). In order to determine the local
stability of (0, 0) we let

X = x− 1
µ

y, Y = y, τ = µt.

Using this transformation system (6) becomes

dX

dτ
= p2(X, Y ),

dY

dτ
= Y + q2(X, Y ), (7)

where

p2(X, Y ) = − 1
µ2

h(X +
1
µ

Y, Y ), q2(X, Y ) =
1
µ

h(X +
1
µ

Y, Y ).

By implicit function theorem, we know that, there exists a smooth function Y =
ϕ(X) and a small positive number δ such that ϕ(X)+ q2(X, ϕ(X)) = 0 for |X| < δ,
where

ϕ(X) = − 5
3µ

X2 + O(X3).

Therefore, p2(X, ϕ(X)) = − 5
3µ2 X2 + O(X3). According to theorem 3.5 in [4], we

obtain that the equilibrium (0, 0) is a saddle-node. This implies the statement (Ci).
If c−b+a−1 = 0, then the eigenvalues of system (6) are two zeros and the linearized
matrix is not zero matrix. Hence, in this case the equilibrium (0, 0) is nilpotent.
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From theorem 3.5 in [4], we obtain that (0, 0) is a cusp for system (6). This implies
statement (Cii). �
From lemma 2.1 and Hopf bifurcation theorem, we can see that there are three
surfaces that when the parameters a, b and c pass through them the equilibrium
O(0, 0) can undergo a series of Hopf bifurcations for any given ε with 0 < ε � 1.
In fact, the Hopf bifurcation surface of codimension one is given by

H1 = {(a, b, c, ε) : a = 0, 2c− b 6= 0, 0 < ε � 1}.

And in the closure of H1 there is a curve

H2 = {(a, b, c, ε) : a = 0, 2c− b = 0, c 6= −5
2
, 0 < ε � 1},

which is a degenerate Hopf bifurcation curve of codimension two. In the closure of
this curve, there is point

H3 = {(a, b, c, ε) : a = 0, b = −5, c = −5
2
, 0 < ε � 1},

which is a degenerate Hopf point of codimension three. Moreover, we have the
following theorem.

Theorem 2.4. Suppose 0 < ε � 1 is given. Then the system (Hε) can undergoe a
series of Hopf bifurcations near equilibrium O(0, 0) for parameters a, b and c near
the bifurcation point (a, b, c) = (0,−5,−5/2). More precisely,
(i) a unique stable limit cycle bifurcates from equilibrium O(0, 0) as a = 0, b = 2c

and c decreases from −5/2;
(ii) a unique unstable limit cycles bifurcates from equilibrium O(0, 0) as a = 0,

c < −5/2 and b increases from −5;
(iii) a unique stable limit cycle bifurcates from equilibrium O(0, 0) as c < −5/2,

b > −5 and a increases from zero.
Therefore, as a > 0, b > −5 and c < −5/2 system (Hε) has three limit cycles
surrounding equilibrium O(0, 0), in which two limit cycles are stable and the other
is unstable.

Theorem 2.4 implies that the maximum number of small amplitude limit cycles
which bifurcate from equilibrium O(0, 0) of system (Hε) is three. Next we deduce
some results concerning the large limit cycles of system (Hε). For this we state
some preliminaries and related definition from [6] about concepts of resultant of
two polynomials and Sturm’s Theorem.
Given two polynomials p, q ∈ C[x, y] say

p(x, y) = a0x
m + · · ·+ am, with a0 6= 0

q(x, y) = b0x
n + · · ·+ bn, with b0 6= 0

where ai, bi ∈ C[y], the resultant of p and q with respect to x denoted by Res(p, q, x)
is determinant of a (m + n) × (m + n) matrix defined in terms of coefficients of p
and q. One of the basic properties of resultant is that Res(p, q, x) vanishes at any
common solution of p(x, y) = q(x, y) = 0 (See appendix 5.1 of [6] for details).
Sturm’s sequence: A sequence {f0, f1, . . . , fm} of continuous function on [a, b] is
called a Sturm’s sequence associated to a f = f0 on [a, b] if the following is verified:
1. f0 is differentiable on [a, b].
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2. fm does not vanish on [a, b].
3. If f(x0) = 0 with x0 ∈ [a, b] then f1(x0)f ′0(x0) > 0.
4. If fi(x0) = 0 with x0 ∈ [a, b] then fi+1(x0)fi−1(x0) < 0.
Then we have the following theorem.
Sturm’s Theorem. Let {f0, f1, . . . , fm} be a Sturm’s sequence for p = f0 on [a, b]
with p(a)p(b) 6= 0. Then the number of roots of p on (a, b) is equal to V (a)− V (b),
where V (c) is the number of changes of sign in the sequence {f0(c), f1(c), ..., fm(c)}.
Now, we state our result as follows.

Lemma 2.5. Suppose 0 < ε � 1.Then
(i) System (Hε) has no closed orbit surrounding equilibrium E(2/3, 0).
(ii) System (Hε) has no closed orbit in the strip −1 < x < 2/3 if it has a weak

focus of order three.

Proof. We prove the part (i) by contradiction. Suppose that system (Hε) has
a closed orbit γ surrounding E(2/3, 0). Then γ crosses line x = 2/3 and positive
x-axis respectively at P (2/3, yp), Q(2/3, yq) and R(xr, 0), where yq < 0 < yp and
xr > 2/3. Hence, the vector field of system (Hε) at P (2/3, yp) is (yp, ε(a+(2/3)b+
(4/9)c+8/27)yp), and vector field of system (Hε) at R(xr, 0) is (0, xr(xr +1)2(xr−
2/3)). Since the orientation of vector field on γ at R is counterclockwise while the
orientation of vector field on γ at P is clockwise. This is a contradiction. Thus part
(i) is proved.
Next we prove part (ii) by applying Lemma 2.3. From Lemma 2.1 we know that
system (Hε) has a weak focus of order three when a = 0, b = −5 and c = −5/2. In
(Hε) we set a = 0, b = −5 and c = −5/2, and transfer the system to the following
system

ẋ = y − F1(x), ẏ = −g1(x), (8)

where F1(x) = −ε
(
− 5

2 x2 − 5
6 x3 + 1

4 x4
)
), g1(x) = −x(x + 1)2(x − 2

3 ) and −1 <
x < 2

3 . Now we investigate if system (8) has a closed orbit for −1 < x < 2/3. It is
clear that xg1(x) > 0 for −1 < x < 2/3 and x 6= 0. Let

G1(x) =
∫ x

0

g1(s)ds =
1
3

x2 +
1
9

x3 − 1
3

x4 − 1
5

x5.

Now, we consider if the equations

F1(u) = F1(x), G1(u) = G1(x), (9)

have a solution (u, x) with −1 < u < 0 and 0 < x < 2/3. By a straightforward
computation, the equations (9) are equivalent to

3 u3 − 10 u2 + 3 xu2 − 30 u− 10 xu + 3 x2u− 30 x− 10 x2 + 3 x3 = 0,

9 u4 + 15 u3 + 9 xu3 − 5 u2 + 15 xu2 + 9 x2u2 − 15 u− 5 xu + 15 x2u + 9 ux3

−15 x− 5 x2 + 15 x3 + 9 x4 = 0. (10)

We compute the resultant of (10) with respect to u and obtain R(x) = 729 x6R1(x),
where

R1(x) = −7425− 4950 x + 13375 x2 + 13980 x3 + 2385 x4 − 810 x5 + 81 x6.
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We now calculate the Sturm’s sequence of polynomial R1(x) and the number of sign
reversal of them in the interval (0, 2/3) by Maple. We obtain that the number of
sign reversal is zero. By Sturm’s Theorem we have that R1(x) < 0 for 0 < x < 2/3.
Therefore equations (9) have no solution (u, x) with −1 < u < 0 and 0 < x < 2/3.
Now, according to Lemma 2.3 we deduce that system (8) does not have a closed
orbit for −1 < x < 2/3. This implies part (ii). This ends the proof of Lemma.

3. Bifurcation of limit cycles from the period annu-
lus

In this section we study the maximum number of limit cycles which bifurcate from
the period annulus of system (H0) for 0 < ε � 1. We use an algebraic criterion
developed in [6] to study the related Abelian integral I(h) of system (Hε). As a
matter of fact, we will show that the base functions {I0(h), I1(h), I2(h), I3(h)} in
the Abelian integral I(h) form a Chebeyshev system. Hence, the Abelian integral
I(h) of system (Hε) has the Chebeyshev property, i.e. the number (multiplicity
taken into account) of isolated zeros of I(h) in the open interval (0, 4/45) is at
most three. Also, using the asymptotic expansions of Abelian integrals I(h) near
the end points of open interval (0, 4/45), we obtain that by Poincaré bifurcation, if
I(h) is not identically zero, the number of isolated zeros of I(h) in the open interval
(0, 4/45) is at least three. Therefore, the maximum number of limit cycles of system
(Hε) bifurcating from the period annulus is three. Our main result in this section
is the following theorem:

Theorem 3.1. Consider the system (Hε) and the related Abelian integral (3).
Then, the collection {I0(h), I1(h), I2(h), I3(h)} is an extended complete Chebeyshev
system on the interval (0, 4/45). Therefore, if the Abelian integral I(h) is not iden-
tically zero then it has at most three zeros, counting multiplicities, in any compact
subinterval of (0, 4/45) and for all values of parameters (a, b, c). And the number
of limit cycles of limit cycles bifurcating from the period annulus is at most three.

In order to prove theorem 3.1, first we recall some preliminaries, the algebraic
criterion and related definition. The reader is referred to [6] for details about the
criterion.

Definition 3.2. Let f0, f1, f2, . . . , fn−1 be analytic functions on an open interval
J of R.
(i) {f0, f1, f2, . . . , fn−1} is said to be Chebeyshev system provided that any non-

trivial linear combination

k0f0(x) + k1f1(x) + · · ·+ kn−1fn−1(x),

has at most n− 1 isolated zeros on J .
(ii) {f0, f1, f2, . . . , fn−1} is said to be complete Chebeyshev system provided that

{f0, f1, f2, . . . , fi−1} is a Chebeyshev system on J for all i = 1, 2, . . . , n.
(iii) {f0, f1, f2, . . . , fn−1} is said to be extended complete Chebeyshev system pro-

vided that any nontrivial linear combination

k0f0(x) + k1f1(x) + · · ·+ ki−1fi−1(x),

has at most i−1 isolated zeros on J counting multiplicity of zeros for all i = 1, 2,
. . . , n.
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(iv) The continuous Wronskian of {f0, f1, f2, . . . , fk−1} at x ∈ R is

W [f0, f1, f2, . . . , fk−1](x) =

∣∣∣∣∣∣∣∣
f0(x) f1(x) . . . fk−1(x)
f ′0(x) f ′1(x) . . . f ′k−1(x)
. . . . . . . . . . . .

f
(k−1)
0 (x) f

(k−1)
1 (x) . . . f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣ ,
where f ′(x) is the derivative of one order of f(x) and f (i)(x) is the ith derivative
of f(x), i ≥ 2.

Consider a Hamiltonian function with the following special form

H(x, y) = A(x) + B(x)y2m,

which is analytic in some open subset of the plane and has a local minimum at the
origin. We fix that H(0, 0) = 0, then there exist a punctured neighborhood P of
the origin foliated by the ovals or period annulus γh ⊂ {H(x, y) = h}. The period
annulus can be parameterized by the energy levels h ∈ (0, h0) for some h0 ∈ (0,+∞].
In the sequel, we denote the projection of P on the x-axis by (x`, xr). It is easy to
verify that, under the above assumptions, xA′(x) > 0 for any x ∈ (x`, xr) \ {0} and
B(0) > 0. Thus there exists a smooth invertible function z(x) with x` < z(x) < 0
such that A(x) = A(z(x)) for 0 < x < xr. Theorem B in [6] is as follows.
Theorem B. Let us consider the Abelian integrals

Ii(h) =
∫

γh

fi(x)y2s−1dx, i = 0, 1, . . . , n− 1,

where, for each h ∈ (0, h0), γh is the oval surrounding the origin inside the level
curve {A(x) + B(x)y2m = h}. We define

li(x) :=
fi(x)

A′(x)(B(x))
2s−1
2m

− fi(z(x))

A′(z(x))(B(z(x)))
2s−1
2m

.

Then {I0, I1, . . . , In−1} is an extended complete Chebeyshev system on (0, h0) if
{l0, l1, . . . , ln−1} is a complete Chebeyshev system on (0, xr) and s > m(n− 2).
The efficiency of Theorem B comes from the fact that the requirement of some func-
tions to be complete Chebeyshev system can be verified by computing Wronskians.
The following well known result will clarify this fact (see [6]).

Lemma 3.3. Let f0, f1, f2, . . . , fn−1 be analytic functions on an open interval J of
R. Then, {f0, f1, f2, . . . , fn−1} is an extended Chebeyshev system if W [f0, f1, f2, . . . ,
fk−1](x) 6= 0 for all x ∈ J and for each k = 1, . . . , n.

Remark 3.4. Indeed, Theorem B and Lemma 3.3 simplify the problem of showing
that a given collection of Abelian integrals Ii(h) has the Chebeyshev property,
and enable us to formulate the problem in a purely algebraic way by checking the
nonexistence of zero points of Wronskians of some functions (here the functions li)
in an open interval.

Proof of Theorem 3.1. We shall apply Theorem B and lemma 3.3 to assert
that the Abelian integral (3) has Chebeyshev property in the interval (0, 4/45).
Consider the Abelian integral (3) with Hamiltonian function (2), which is a linear
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combination of {I0(h), I1(h), I2(h), I3(h)}, where Ii(h) =
∮

γh
xiydx, i = 0, 1, 3, 4

and γh is the oval

{(x, y) : A(x) + B(x)y2 = h, 0 < h <
4
45
},

with A(x) = 1
3 x2 + 1

9 x3− 1
3 x4− 1

5 x5, and B(x) = 1
2 . The projection of the period

annulus on the x-axis is (−1, 2/3). Note that xA′(x) > 0 for all x ∈ (−1, 2/3) \
{0}. Therefore, there exists an invertible function z(x) with −1 < z(x) < 0 such
that A(x) = A(z(x)) as 0 < x < 2/3. Our aim is to prove that the collection
{I0(h), I1(h), I2(h), I3(h)} is an extended complete Chebeyshev system. To this end
we apply Theorem B and Lemma 3.3, but we note that in this case m = 1, n = 4
and s = 1, so that the hypothesis s > m(n−2) is not fulfilled. However it is possible
to overcome this problem using Lemma 4.1 in [6], and obtain new Abelian integrals
for which the corresponding s is large enough to verify the inequality. Here we have
to promote the power s to three such that the condition s > n− 2 hold.
On the oval γh we have

Ii(h) =
1
h

∮
γh

(
A(x) +

y2

2

)
xiydx

=
1
2h

(∮
γh

2xiA(x)ydx +
∮

γh

xiy3dx

)
, i = 0, 1, 2, 3. (11)

Now we apply Lemma 4.1 in [6] with k = 3 and F (x) = 2xiA(x) to the first integral
above to get ∮

γh

2xiA(x)ydx =
∮

γh

Gi(x)y3dx,

where Gi(x) = d
3dx ( 2xiA(x)

A′(x) ) = 2gi

45(x+1)3(3 x−2)2
, and

gi = 30xi + 54 xi+4i− 18 xi+3i− 80 xi+2i− 5 xi+1i + 27 xi+5

+45xi+4 + 3 xi+3 − 15 xi+2 − 10 xi+1 + 27 xi+5i + 30 xii

By (11) we obtain

Ii(h) =
1
2h

∮
γh

(
xi + Gi(x)

)
y3dx =

1
4h2

∮
γh

(2A(x) + y2)(xi + Gi(x))y3dx

=
1

4h2

(∮
γh

2(xi + Gi(x))A(x)y3dx +
∮

γh

(xi + Gi(x))y5dx

)
. (12)

Again we apply Lemma 4.1 in [6] with k = 5 and F (x) = 2(xi + Gi(x))A(x) to the
first integral above to get∮

γh

2(xi + Gi(x))A(x)y3dx =
∮

γh

G̃i(x)y5dx,
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where G̃i(x) = d
5dx ( 2(xi+Gi(x))A(x)

A′(x) ) = 2g̃i

3375 (x+1)6(3 x−2)4
, and

g̃i = 12393x10+i + 27945 x8+i + 13851x10+ii + 41310x9+i + 5832 x9+ii2

+7920xi+5i2 + 13230 xi+5 − 12528 x7+ii2 − 560 xi+3i2 − 40608 x7+i

+19640xi+4i2 − 100467 xi+6i− 53091 xi+6 − 600 xi+1i2 − 9550 xi+2i2

−17172 xi+6i2 − 81675 x7+ii + 1458 x10+ii2 + 1800 xii2 + 31347x8+ii

+3888x8+ii2 + 3940 xi+3 − 12750 xi+2 − 3600 xi+1 + 200 xi

+40575xi+4 − 3505 xi+3i− 41900 xi+2i− 3000 xi+1i + 9000 xii

+91465xi+4i + 41175 xi+5i + 50301 x9+ii

From (12) we obtain

4h2Ii(h) =
∮

γh

fi(x)y5dx ≡ Ĩi(h), (13)

where fi(x) = xi + Gi(x) + G̃i(x). It is clear that {Ĩ0, Ĩ1, Ĩ2, Ĩ3} is an extended
complete Chebeyshev system on (0, 4/45) if and only if {I0, I1, I2, I3} is as well. We
can now apply Theorem B because s = 3 and the condition s > m(n − 2) holds.
Thus, setting

li(x) =
(

fi

A′

)
(x)−

(
fi

A′

)
(z(x)),

we have to check that {l0, l1, l2, l3} is complete Chebeyshev system on x ∈ (0, 2/3).
More precisely we will show that {l0, l1, l2, l3} is an extended complete Chebeyshev
system. Moreover due to

A(x)−A(z) = − 1
45

(x− z)
(
9 x4 + 15 x3 + 9 zx3 − 5 x2 + 15 zx2 + 9 z2x2

− 15 x− 5 zx + 15 z2x + 9 xz3 − 15 z − 5 z2 + 15 z3 + 9 z4
)

it turns out that z = z(x) is defined by means of

q(x, z) :=
(
9 x4 + 15 x3 + 9 zx3 − 5 x2 + 15 zx2 + 9 z2x2 − 15 x− 5 zx

+ 15 z2x + 9 xz3 − 15 z − 5 z2 + 15 z3 + 9 z4
)

= 0. (14)

In order to determine if the four Wronskians have zeros on (0, 2/3) , we invoke
the symbolic computations by Maple 12 to compute the resultant between two
polynomials, and apply Sturm’s Theorem to claim the nonexistence of zeros of a
polynomial in an interval. We have the following lemma.

Lemma 3.5.

(i) W [l0](x) 6= 0 for all x ∈ (0, 2/3);
(ii) W [l0, l1](x) 6= 0 for all x ∈ (0, 2/3);
(iii) W [l0, l1, l2](x) 6= 0 for all x ∈ (0, 2/3);
(iv) W [l0, l1, l2, l3](x) 6= 0 for all x ∈ (0, 2/3).

Proof. We now compute four Wronskians in four cases and check if they have
zeros on (0, 2/3).
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Case (i). Note that W [l0](x) =
(

fi

A′

)
(x) −

(
fi

A′

)
(z(x)). Using symbolic computa-

tions in Maple, we have

W [l0](x) =
(x− z)W0(x, z)

1125 xz (x + 1)8 (3 x− 2)5 (z + 1)8 (3 z − 2)5
,

where W0(x, z) is a polynomial in (x, z) with long expression. The resultant with
respect to z between q(x, z) and W0(x, z) is R0(x) = (3x− 2)19 (x + 1)29 p0(x),
where p0(x) is a polynomial of degree 44 in x. By applying Sturm’s Theorem we
get that p0(x) 6= 0 for all x ∈ (0, 2/3). Thus, W0(x, z) = 0 and q(x, z) = 0 have no
common roots, and this fact implies that W [l0](x) 6= 0 for all x ∈ (0, 2/3).
Case (ii). Using symbolic computations in Maple, we have

W [l0, l1](x) =
(x− z)3W1(x, z)

z2x2 (z + 1)16 (3 z − 2)9 (x + 1)16 (3 x− 2)9 W01(x, z)
,

where W01(x, z) = (9x3 + 15 x2 + 18 zx2 − 5 x + 30 zx + 27 z2x− 15− 10 z + 45 z2

+36 z3) and W1(x, z) is a polynomial with long expression in (x, z). The resultant
with respect to z between W01(x, z) and q(x, z) does not have zero in (0, 2/3). This
implies that W [l0, l1] is well defined in −1 < z < 0 < x < 2/3. The resultant with
respect to z between q(x, z) and W1(x, z) is R1(x) = (3x− 2)35 (x + 1)57 p1(x),
where p1(x) is a polynomial of degree 92 in x. By applying Sturm’s Theorem
we get that p1(x) has unique root in the interval (0, 2/3) at x∗ ≈ 0.4955588118.
Substituting x = x∗ into q(x, z), we find that q(x∗, z) has also a unique root in the
interval (−1, 0) at z∗ = −0.6078868472. However W1(x∗, z∗) ≈ 6.93493329 × 108.
This, implies that W1(x, z) = 0 and q(x, z) = 0 have no common roots, and this
fact implies that W [l0, l1](x) 6= 0 for all x ∈ (0, 2/3).
Case (iii). Let us compute the W [l0, l1, l3] and get

W [l0, l1, l2](x) =
(x− z)6W2(x, z)

x3z3 (3 z − 2)12 (z + 1)23 (3 x− 2)12 (x + 1)23 W 3
01(x, z)

,

where W2(x, z) is a polynomial with long expression in (x, z). The resultant with
respect to z between q(x, z) and W2(x, z) is R2(x) = (3x− 2)46 (x + 1)80 p2(x),
where p2(x) is a polynomial of degree 142 in x. By applying Sturm’s Theorem
we get that p2(x) has unique root in the interval (0, 2/3) at x∗ ≈ 0.6134326481.
Substituting x = x∗ into q(x, z), we find that q(x∗, z) has also a unique root in the
interval (−1, 0) at z∗ ≈ −0.8251204190. However W2(x∗, z∗) ≈ −7.97078 × 1021.
This, implies that W2(x, z) = 0 and q(x, z) = 0 have no common roots, and this
fact implies that W [l0, l1, l2](x) 6= 0 for all x ∈ (0, 2/3).
Case (iv). Finally, we compute W [l0, l1, l2, l3].

W [l0, l1, l2, l3](x) =
(x− z)10W3(x, z)

x4z4 (3 z − 2)15 (z + 1)30 (3 x− 2)15 (x + 1)30 W 6
01(x, z)

,

where W3(x, z) is a polynomial with long expression in (x, z). The resultant with
respect to z between q(x, z) and W3(x, z) is R3(x) = (3x− 2)62 (x + 1)108 p3(x),
where p3(x) is a polynomial of degree 190 in x. By applying Sturm’s Theorem
we get that p3(x) has two roots in the interval (0, 2/3) at x∗1 ≈ 0.4390252906 and
x∗2 ≈ 0.6258713150. Substituting x = x∗1 into q(x, z), we find that q(x∗1, z) has a
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unique root in the interval (−1, 0) at z∗1 = −0.5218476681. However W3(x∗1, z
∗
1) ≈

−1.842798602 × 1030. On the other hand, substituting x = x∗2 into q(x, z), we
find that q(x∗2, z) has a unique root in the interval (−1, 0) at z∗2 = −0.8543165067.
Nevertheless, W3(x∗2, z

∗
2) ≈ 4.866339667×1036. This, implies that W3(x, z) = 0 and

q(x, z) = 0 have no common roots, and this fact implies that W [l0, l1, l2, l3](x) 6= 0
for all x ∈ (0, 2/3). We finish the proof of lemma.

This ends the proof of theorem 3.1.

4. Asymptotic expansion of Abelian integral I(h) at
center and heteroclinic loop

In this section we study the asymptotic expansions of Abelian integrals I(h) at the
end points h = 0 and h = 4/45, respectively. Using the two asymptotic expansions
we show that there exist some parameter values such that the Abelian integral I(h)
has three isolated zeros in (0, 4/45). In fact, we prove the following theorem:

Theorem 4.1. There exist values of parameters (a, b, c) for which the system (Hε)
has three limit cycles, for 0 < ε � 1.

Proof. We use the asymptotic expansions of I(h) at the end points of (0, 4/45). To
obtain the asymptotic expansion of Abelian integrals I(h) as h → 0+, we compute
I(h) near the elementary equilibrium (0, 0). We first apply the change of variables
of the form X =

√
2x/

√
3, Y = y and a time scaling T =

√
2t/
√

3 to system (Hε)
and still denote X, Y, T by x, y, t respectively. Applying these change of variables,
on the oval we get

γh :
1
2
(x2 + y2)− 9

40

√
6x5 − 3

4
x4 +

1
12

√
6x3 = h.

About the expansion of I(h) near the elementary center (0, 0) we have

I(h) =
∑
j≥0

bjh
j+1. (15)

Using the formulas of bj , j = 0, 1, 2, 3 given by Han in [8], we have

b0 =
√

6aπ, b1 =
√

6
(

3
4
c +

41
32

a− 3
8

b

)
π,

b2 =
√

6
8

(
−15

2
+

17017
384

a− 239
16

b +
215
8

c

)
π, (16)

b3 =
5
√

6
64

(
−197701

1280
b− 7959

80
+

169813
640

c +
97936573
230400

a

)
π.

If b0 = b1 = b2 = 0, then we obtain that (a, b, c) = (0,−5,−5/2). At this parame-
ters point we obtain that b3 = 189

256

√
6π 6= 0. From [8], we know that system (Hε)

can have at least 3 limit cycles near the critical point (0, 0) as ε is very small. This
matches with Hopf bifurcation values of system (Hε) in Section 2.
On the other hand, we consider the asymptotic expansion of I(h) as h → 4

45

−.
The expansion of the Abelian integral of a perturbed Hamiltonian system near a
heteroclinic loop with a cusp and a saddle has been given by X. Sun et al. in [10].
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According to Theorem 1.4 in [10] the expansion of Abelian integral (3) as h → 4
45

−

is as follows.

I(h) = c0 + B00c1

(
4
45
− h

)
+ c2

(
4
45
− h

)
ln
(

4
45
− h

)
+(c3 + b1c1 + b2c2)

(
4
45
− h

)
+ O

((
4
45
− h

) 7
6
)

, (17)

where B00 > 0, b1 and b2 are some constants. And the coefficients cj can be
computed as follows:

c0 = − 200
6567561

√
6 (11583 a− 858 b + 1508 c− 408) ,

c1 = −2
5

√
2(−5)2/391/3(a + c− b− 1),

c2 = −
√

6
90

(12 c + 18 b + 8 + 27 a) ,

c3 =
10
27

√
6 (14 + 27 b) , when c1 = c2 = 0.

If c0 = c1 = c2 = 0, then we obtain that (a, b, c) = (− 8
117 ,− 74

117 , 17
39 ). At this

parameters point we obtain that c3 = − 400
351

√
6 6= 0.

From Theorem 1.5 in [10], we know that system (Hε) can have at least 3 limit cycles
near the heteroclinic loop as ε is very small. The proof is complete.
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