For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 1, Number 2, 2011, Pages 219-242                                                                DOI:10.11948/2011015
On the existence of bubble-type solutions of nonlinear singular problems
Feng Jiao,Jianshe Yu
Keywords:Singular boundary value problem
Abstract:
      Considered in this paper is a class of singular boundary value problem, arising in hydrodynamics and nonlinear field theory, when centrally bubble-type solutions are sought: \((p(t)u0)0 = c(t)p(t)f(u); u0(0) = 0; u(+1) = L > 0\) in the half-line \([0;+1)\), where \(p(0) = 0\). We are interested in strictly increasing solutions of this problem in \([0;1)\) having just one zero in \((0;+1) \)and finite limit at zero, which has great importance in applications or pure and applied mathematics. Su±cient conditions of the existence of such solutions are obtained by applying the critical point theory and by using shooting argument [9,10] to better analysis the properties of certain solutions associated with the singular di®erential equation. To the authors' knowledge, for the first time, the above problem is dealt with when f satis¯es non-Lipschitz condition. Recent results in the literature are generalized and signi¯cantly improved.
PDF      Download reader