For EDITORS

For READERS

All Issues

Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 1, Number 2, 2011, Pages 173-182                                                                DOI:10.11948/2011011
On the number of \(n\)-dimensional invariant spheres in polynomial vector fields of \(\mathbb{C}^{n+1}\)
Yudy Bola\(\tilde{n}\)os,Jaume Llibre
Keywords:polynomial vector fields, invariant spheres, invariant circles, extactic algebraic hypersurface
Abstract:
      We study the polynomial vector fields \(\mathcal{X}= \displaystyle \sum_{i=1}^{n+1} P_i(x_1,\ldots,x_{n+1}) \frac{\partial}{\partial x_i}\) in \(\mathbb{C}^{n+1}\) with \(n\geq 1\) . Let \(m_i\) be the degree of the polynomial \(P_i\). We call \((m_1,\ldots,m_{n+1})\) the degree of \(\mathcal{X}\). For these polynomial vector fields \(\mathcal{X}\) and in function of their degree we provide upper bounds, first for the maximal number of invariant \(n\)-dimensional spheres, and second for the maximal number of \(n\)-dimensional concentric invariant spheres.
PDF      Download reader