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ON THE NUMBER OF N–DIMENSIONAL

INVARIANT SPHERES IN POLYNOMIAL

VECTOR FIELDS OF CN+1
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Abstract We study the polynomial vector fields X =

n+1
X

i=1

Pi(x1, . . . , xn+1)
∂

∂xi

in C
n+1 with n ≥ 1 . Let mi be the degree of the polynomial Pi. We call

(m1, . . . , mn+1) the degree of X . For these polynomial vector fields X and in
function of their degree we provide upper bounds, first for the maximal num-
ber of invariant n–dimensional spheres, and second for the maximal number
of n–dimensional concentric invariant spheres.
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1. Introduction and statement of the main results

Let X be the polynomial vector field in Cn+1 defined by

X =

n+1
∑

i=1

Pi(x1, . . . , xn+1)
∂

∂xi

,

where every Pi is a polynomial of degree mi in the variables x1, . . . , xn+1 with
coefficients in C. We say that m = (m1, . . . , mn+1) is the degree of the polynomial
field, we assume without loss of generality that m1 ≥ · · · ≥ mn+1. We recall that
the polynomial differential system in Cn+1 of degree m associated with the vector
field X is written as

dxi

dt
= Pi(x1, . . . , xn+1), i = 1, . . . , n + 1.

By the Darboux theory of integrability we know that the existence of a sufficiently
large number of invariant algebraic hypersurfaces guarantees the existence of a first
integral for the polynomial vector field X which can be calculated explicitly, see for
instance [4, 6]. As usual C[x1, . . . , xn+1] denotes the ring of all polynomials in the
variables x1, . . . , xn+1 and coefficients in C. We recall that an invariant algebraic
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hypersurface of X is a hypersurface f(x1, . . . , xn+1) = 0 with f ∈ C[x1, . . . , xn+1]
such that there exists a polynomial K ∈ C[x1, . . . , xn+1] satisfying Xf = ∇f · X =
Kf . This polynomial K is called the cofactor of the invariant algebraic hypersurface
f = 0, and ∇f denotes the gradient of the function f . Note that if the vector field
X has degree m, then any cofactor has at most degree m1 − 1. If the degree of
f is 1 then the hypersurface f = 0 is an invariant hyperplane. Here we study the
algebraic hypersurfaces f = (x1 − a1)

2 + . . . + (xn+1 − an+1)
2 − r2 = 0 that are

invariant n–dimensional spheres.

Now we introduce one of the best tools in order to look for invariant algebraic hy-
persurfaces. Let W be a vector subspace of the space of polynomials C[x1, . . . , xn+1]
generated by the polynomials v1, . . . , vl. The extactic algebraic hypersurface of X
associated with W is

εW (X ) = det











v1 v2 · · · vl

X (v1) X (v2) · · · X (vl)
...

... · · ·
...

X l−1(v1) X l−1(v2) · · · X l−1(vl)











= 0, (1.1)

where {v1, . . . , vl} is a basis of W , l = dim(W ) is the dimension of W and X j(vi) =
X j−1(X (vi)). From the properties of the determinants and of the derivation we
know that the definition of extactic algebraic hypersurface is independent of the
chosen basis of W .

The notion of extactic algebraic hypersurface εW (X ) is important here for two
reasons. First it allows to detect when an algebraic hypersurface f = 0 with f ∈ W
is invariant by the polynomial vector field X , see the next proposition proved in [3]
for polynomial vector fields in C2; the extension to Cn+1 is easy and it is presented
here. Second εW (X ) is also important because it allows to define and compute
easily the multiplicity of an invariant algebraic hypersurface.

Proposition 1.1. Let X be a polynomial vector field in Cn+1 and let W be a
finitely generated C–vector subspace of C[x1, . . . , xn+1] with dim(W ) > 1. Then
every algebraic invariant hypersurface f = 0 for the vector field X , with f ∈ W , is
a factor of the polynomial εW (X ).

The number of invariant straight lines for polynomial vector fields in C2 has
been studied by several authors, see [1]. We know that for polynomial vector fields
of degree (2, 2) the maximal number of invariant straight lines is 5. Xiang Zhang [8]
and Sokulski [7] proved that the maximal number of real invariant straight lines for
polynomial vector fields in R

2 of degrees (3,3) and (4,4) are 8 and 9, respectively.
Later on Llibre and Medrado in [5] generalized these results to invariant hyperplanes
of polynomial vector fields in Cn+1.

We want to know the maximum number of n-dimensional invariant spheres that
a polynomial vector field in Cn+1 can have. We begin this study by analyzing first

the case C2. That is, given a polynomial vector field X = P
∂

∂x
+ Q

∂

∂y
with P

and Q polynomials in the variables x and y of degree m = (m1, m2), m1 ≥ m2 and
f = f(x, y) = (x − a)2 + (y − b)2 − r2 = 0 a circle with center (a, b) and radius
r > 0, we find an upper bound for the maximum number of invariant circles f = 0
of the polynomial vector field X , and we determine if this bound is reached or not
in the class of all polynomial vector fields with degree (m1, m2).
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The multiplicity of an invariant circle f = (x − a)2 + (y − b)2 − r2 = 0 is
the greatest positive integer k such that fk divides the polynomial εW (X ) with
W generated by 1, x2, x, y2, y. When we study the maximum number of concentric
invariant circles of a polynomial vector field X , doing a translation of the center,
we can assume without loss of generality, that the center is at the origin. Then the
multiplicity of an invariant circle centered at the origin f = x2 + y2 − r2 = 0 is
the greatest positive integer k such that fk divides the polynomial εW (X ) with W
generated by 1, x2, y2.

Below we present the main results of this article in C2 and in the next section
in C

n+1. In both cases we provide upper bounds for the number of invariant n–
dimensional spheres concentric or not that a polynomial vector field in C2 or Cn+1

can possess. Moreover we show that these bounds are in general not reached. We
also determine the exact upper bound for the number of invariant circles concentric
or not that polynomial vector fields of degree (2, 2) in C2 can have.

Theorem 1.1. Assume that a polynomial vector field X in C
2 of degree m =

(m1, m2) with m1 ≥ m2 has a finite number of invariant circles. Then the following
statements hold.

(a) The number of invariant circles of X taking into account its multiplicity is at
most 4m1 + m2 − 2.

(b) The number of concentric invariant circles of X taking into account its mul-
tiplicity is at most m1 + [(m2 + 1)/2]. Here [x] denotes the integer part of
x ∈ R.

Corollary 1.1. Assume that a polynomial vector field X in C2 of degree m =
(m, m) has a finite number of invariant circles. Then the following statements
holds.

(a) The number of invariant circles of X taking into account its multiplicity is at
most 5m − 2.

(b) The number of concentric invariant circles of X taking into account its mul-
tiplicity is at most [(3m + 1)/2].

Proposition 1.2. The bounds given by Theorem 1.1 are not reached.

Corollary 1.2. Assume that a polynomial vector field X in C2 of degree (2, 2) has
a finite number of invariant circles. Then the following statements holds.

(a) The number of invariant circles of X taking into account its multiplicity is at
most 2.

(b) The number of concentric invariant circles of X taking into account its mul-
tiplicity is at most 1.

Now we generalize the previous results to invariant n–dimensional spheres of
polynomial vector fields in Cn+1.

The multiplicity of an invariant n–dimensional sphere

f = (x1 − a1)
2 + . . . + (xn+1 − an+1)

2 − r2 = 0

is the greatest positive integer k such that fk divides the polynomial εW (X ) with
W generated by {1, x2

1, x1, . . . , x
2
n+1, xn+1}.
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The multiplicity of an invariant n–dimensional sphere with center at the origin

f = x2
1 + . . . + x2

n+1 − r2 = 0

is the greatest positive integer k such that fk divides the polynomial εW (X ) with
W generated by {1, x2

1, . . . , x
2
n+1}.

Theorem 1.2. Assume that a polynomial vector field X in Cn+1 with n ≥ 1 of
degree m = (m1, . . . , mn+1) with m1 ≥ · · · ≥ mn+1 has finitely many invariant
n–dimensional spheres. Then the following statements hold.

(a) The number of invariant n–dimensional spheres of X taking into account its
multiplicity is at most

[

1

2

((

n+1
∑

k=1

2mk

)

+

(

2(n + 1)

2

)

(m1 − 1) + (n + 1)

)]

.

(b) The number of concentric invariant n–dimensional spheres of X taking into
account its multiplicity is at most

[

1

2

((

n+1
∑

k=1

mk

)

+

(

n + 1

2

)

(m1 − 1) + (n + 1)

)]

.

Corollary 1.3. Assume that a polynomial vector field X in Cn+1 with n ≥ 1 of
degree m = (m, . . . , m) has finitely many invariant n–dimensional spheres. Then
the following statements hold.

(a) The number of invariant n–dimensional spheres of X taking into account its
multiplicity is at most

[

1

2
(n + 1)(3m + 2n(m − 1))

]

.

(b) The number of invariant n–dimensional spheres of X taking into account its
multiplicity is at most

[

n + 1

2

(

m +
n(m − 1)

2
+ 1

)]

.

All the results in C2 are proved in section 2, and the results in Cn+1 are shown
in section 3.

2. Invariants circles

First we shall show that any invariant algebraic hypersurface is a factor of a conve-
nient extactic algebraic hypersurface.

Proof of Proposition 1.1. Let f = 0 be an invariant algebraic hypersurface X
such that f ∈ W . As was observed, the choice of the basis v1, . . . , vl of W plays
no role in the definition of extactic algebraic hypersurface, therefore we can take
v1 = f in (1.1).
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Using induction we shall see that X k(f) = Kkf being Kk a polynomial for
k = 1, 2, . . . In fact, if k = 1 we have X (f) = K1f where K1 is the cofactor of the
invariant algebraic hypersurface f = 0. Suppose that X k(f) = Kkf being Kk a
polynomial, and see the case k + 1. We have

X k+1(f) = X (X k(f)) = X (Kkf) = X (Kk)f + KkX (f)
= (X (Kk) + KkK1)f = Kk+1f.

Thus f appears in all terms in the first column of the determinant εW (X ), and
therefore f is a factor of the polynomial εW (X ).

Proof of Theorem 1.1. In order to prove the statement (a) we take the subspace
W generated by the polynomials {1, x2, x, y2, y}. Then if f = 0 is a circle we have
that f ∈ W .

By Proposition 1.1 if f = 0 is an invariant circle of X , then f is a factor of the
polynomial

εW (X ) = det













1 x2 x y2 y
0 X (x2) X (x) X (y2) X (y)
0 X 2(x2) X 2(x) X 2(y2) X 2(y)
0 X 3(x2) X 3(x) X 3(y2) X 3(y)
0 X 4(x2) X 4(x) X 4(y2) X 4(y)













= det(aij). (2.1)

Note that the degree of the polynomial aij of the previous matrix verifies that
deg(aij) = deg(ai−1 j) + m1 − 1 if i = 2, 3, 4, 5 and j = 2, 3, 4, 5. In fact, every
time that we apply the polynomial vector field X to a polynomial, the degree of the
resultant polynomial is determined by the first term that multiplies P1 (polynomial
of higher degree) and decreases by 1 for the derivation due to the application of the
vector field. For instance, since the degree of X (x) is m1 the degree of X 2(x) is
2m1 − 1.

Since m1 ≥ m2 and from the definition of determinant, it follows that the degree
of the polynomial εW (X ) is

(4m1 − 2) + (3m1 − 2) + (m1 + m2) + m2 = 8m1 + 2m2 − 4.

Note that the previous degree corresponds to the degree of the polynomial X 4(x2)
X 3(x)X 2(y2)X (y), which corresponds to a permutation of four elements with max-
imal degree in the expansion of the determinant (2.1).

Since the polynomial εW (X ) can have at most its degree divided by 2 factors of
the form f(x, y) = (x − a)2 + (y − b)2 − r2, by Proposition 1.1 it follows statement
(a) of the theorem.

Now consider a set of concentric circles. Doing an appropriate change of coordi-
nates we can consider that the equations of these circles are the form x2+y2−r2 = 0.
Thus all these circles can be written in the form f = 0 with f ∈ W , where W is the
C-vector subspace of C[x, y] generated by 1, x2, y2. Therefore by Proposition 1.1 if
f = 0 is one of these circles, then f is a factor

εW (X ) = det





1 x2 y2

0 X (x2) X (y2)
0 X 2(x2) X 2(y2)



 .
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So the degree of the polynomial εW (X ) is 2m1 +m2 +1 and therefore the statement
(b) of the theorem holds.

Proof of Corollary 1.1. The proof is obtained from Theorem 1.1 by a simple
calculation.

Now we show that the bounds given by Theorem 1.1 are not reached. For this
we need the following lemma which is proved in [2]. Recall that an algebraic curve
f = f(x, y) = 0 is non–singular if there are points at which f and its first derivatives
fx and fy are all zero.

Lemma 2.1. Assume that a polynomial differential system has a non–singular in-
variant algebraic curve f = 0. If (fx, fy) = 1, then the polynomial differential
system can be written into the form

ẋ = Af + Cfy, ẏ = Bf − Cfx, (2.2)

where A, B and C are suitable polynomials.

Proof of Proposition 1.2. We shall prove that the maximum number of invariant
circles that a quadratic vector field can have is less than 4m1 + m2 − 2. We also
will prove that the maximum number of invariant concentric circles of a quadratic
vector field is less than m1 + [(m2 + 1)/2]. Consequently the two upper bounds of
Theorem 1.1 are not reached for quadratic vector fields.

Suppose that a quadratic vector field X has an invariant circle, doing an affine
change of coordinates, if necessary, the center of the circle can be translated to the
origin and its radius can be taken equals 1, i.e. it can be written as x2 + y2 −1 = 0.
Therefore, Lemma 2.1 states that the quadratic differential system associated the
field X can be written in the form (2.2) with A, B ∈ R and C = (ax + by + c)/2,
this is

ẋ = A(x2 + y2 − 1) + y(ax + by + c),
ẏ = B(x2 + y2 − 1) − x(ax + by + c),

(2.3)

which has the circle x2 + y2 − 1 = 0 invariant.

Without loss of generality we can assume that B = 0. Indeed if B = 0 we have
what we want. Suppose that B 6= 0. Then changing the variables (x, y) for the
variables

(

X
Y

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

,

with cos θ = A/
√

A2 + B2 and sin θ = −B/
√

A2 + B2, the quadratic system in the
new variables becomes

Ẋ = A(X2 + Y 2 − 1) + Y (aX + bY + c), Ẏ = −X(āX + b̄Y + c̄),

where

Ā =
√

A2 + B2, a =
aA + bB√
A2 + B2

, b =
Ab − aB√
A2 + B2

, c = c.

Note that renaming the coefficients of this quadratic system we obtain the quadratic
system (2.3) with B = 0. So we can work with the quadratic system

ẋ = A(x2 + y2 − 1) + y(ax + by + c), ẏ = −x(ax + by + c).
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Consider the circle with center (p, q) and radius r, i.e. f(x, y) = (x− p)2 + (y −
q)2 − r2 = 0. If f = 0 is an invariant circle of X , then it verifies Xf = Kf , where
K = K(x, y) = Dx + Ey + F . Therefore, we obtain

[A(x2 + y2 − 1) + y(ax + by + c)]2(x − p) − x(ax + by + c)
2(y − q) = (Dx + Ey + F )[(x − p)2 + (y − q)2 − r2].

(2.4)

We will analyze the two cases that interest us, solutions where we get concentric
invariant circles and, in the general case solutions which give rise to any invariant
circle that the quadratic vector field X can have.

In the case of concentric invariants circles we have p = q = 0. Then equation
(2.4) becomes

2Ax3 + 2Axy2 − 2Ax =
Dx3 + Dxy2 − Dr2x + Ex2y + Ey3 − Er2y + Fx2 + Fy2 − Fr2.

Thus D = 2A, 2A = Dr2, E = 0 y F = 0. If A 6= 0, D = Dr2 so that r = 1.

If A = 0 then also D = 0, and the resulting system associated with the vector
field X is ẋ = y(c + ax + by), ẏ = −x(c + ax + by), which has all the circles
f(x, y) = x2 +y2−r2 = 0 with arbitrary r > 0 invariant. Therefore this vector field
has infinitely many invariant circles, and these fields are not considered in Theorem
1.1.

In short a quadratic vector field can have at most one concentric invariant circle.

Nontrivial real solutions different from the unit circle that we obtain by solving
equation (2.4) are

(i) a = 0, b = −D, c =
1

2
D(r2 − 2), A =

D

2
, E = 0, F = 0, q = −1, p = 0.

This is, we obtain the invariant circle f(x, y) = x2 + (y + 1)2 − r2 = 0 for the
system

ẋ =
1

2
D(x2 + y2 − 1) + y

(

−Dy +
1

2
D(r2 − 2)

)

,

ẏ = −x

(

−Dy +
1

2
D(r2 − 2)

)

.
(2.5)

(ii) a = 0, b = −D, c = 1
2D(2 − r2), A = D

2 , E = 0, F = 0, q = 1, p = 0. This is,
we obtain the invariant circle f(x, y) = x2 + (y − 1)2 − r2 = 0 for the system

ẋ =
1

2
D(x2 + y2 − 1) + y

(

−Dy +
1

2
D(2 − r2)

)

,

ẏ = −x

(

−Dy +
1

2
D(2 − r2)

)

.
(2.6)

(iii) a = 0, b = −D, c =
D(1 + q2 − r2)

2q
, A =

D

2
, E = 0, F = 0, p = 0 y q 6= 0.

This is, we obtain the invariant circle f(x, y) = x2 + (y − q)2 − r2 = 0 for the
system

ẋ =
1

2
D(x2 + y2 − 1) + y

(

D(1 + q2 − r2)

2q
− Dy

)

,

ẏ = −x

(

−Dy +
D(1 + q2 − r2)

2q

)

.
(2.7)
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Thus, systems (2.5), (2.6) and (2.7) possess two invariant circles. Therefore we have
proved that the maximum number of invariant circles for a quadratic vector field is
two.

Proof of Corollary 1.2. The proof follows immediately from the proof of Propo-
sition 1.2.

3. Invariant n–dimensional spheres

In this section we shall prove Theorem 1.2 and Corollary 1.3 which contain our
results for polynomial vector fields in Cn+1.

Proof of Theorem 1.2. Let W be the vectorial subspace of C[x1, . . . , xn+1]
generated by 1, x2

1, x1, x2
2, x2, . . . , x

2
n+1, xn+1. Then if f = 0 is a n–dimensional

sphere, f ∈ W .

From Proposition 1.1 if f = 0 is an invariant n–dimensional sphere of X , then
f is a factor of the polynomial εW (X ) given by

det

0

B

B

B

B

B

B

B

B

B

@

1 x2
1 x1 · · · x2

n+1 xn+1

0 X (x2
1) X (x1) · · · X (x2

n+1) X (xn+1)
0 X 2(x2

1) X 2(x1) · · · X 2(x2
n+1) X 2(xn+1)

...
...

... · · ·
...

...
0 X 2(n+1)(x2

1) X 2(n+1)(x1) · · · X 2(n+1)(x2
n+1) X 2(n+1)(xn+1)

1

C

C

C

C

C

C

C

C

C

A

. (3.1)

Note that for k = 1, . . . , n + 1, the degree of the polynomials X (xk), X 2(xk),
X 3(xk), . . ., X 2(n+1)(xk) are mk, m1 + mk − 1, 2(m1 − 1) + mk, . . ., (2(n + 1) −
1)(m1 − 1) + mk respectively, and the degree of the polynomials X (x2

k), X 2(x2
k),

X 3(x2
k), . . ., X 2(n+1)(x2

k) are mk + 1, m1 + mk, 2(m1 − 1) + mk + 1,. . ., (2(n + 1)−
1)(m1 − 1) + mk + 1. In general we have that X d(xk) = (d − 1)(m1 − 1) + mk and
X d(x2

k) = (d − 1)(m1 − 1) + mk + 1 for d = 1, . . . , 2(n + 1).

Since m1 ≥ · · · ≥ mn+1 and from the definition of the determinant, it follows
that the degree of the polynomial εW (X ) is the degree of one of the polynomials
of the determinant (3.1) which corresponds to a permutation of 2n + 2 of their
elements with maximal degree and is given by the expression

X 2(n+1)(x2
1)X 2(n+1)−1(x1)X 2(n+1)−2(x2

2)X 2(n+1)−3(x2) · · ·
X 4(x2

n)X 3(xn)X 2(x2
n+1)X (xn+1).

Note that the degree of this polynomial is

[(2(n + 1) − 1)(m1 − 1) + m1 + 1] + [(2(n + 1) − 2)(m1 − 1) + m1]

+[(2(n + 1) − 3)(m1 − 1) + m2 + 1] + [(2(n + 1) − 4)(m1 − 1) + m2]

+ · · ·
+[3(m1 − 1) + mn + 1] + [2(m1 − 1) + mn]

+[(m1 − 1) + mn+1 + 1] + mn+1

=

(

n+1
∑

k=1

2mk

)

+

(

2(n + 1)

2

)

(m1 − 1) + (n + 1).
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Since the number of factors (x1−a1)
2+(x2−a2)

2+ · · ·+(xn+1−an+1)
2−r2 = 0

of the polynomial εW (X ) is at most its degree divided by 2, by Proposition 1.1 it
follows the number of statement (a) of the theorem.

Now we consider a set of concentric invariant n–dimensional spheres. Doing
an appropriate change of coordinates we can consider that the equations of these
spheres have the form x2

1 + x2
2 + · · · + x2

n+1 − r2 = 0. Then all these spheres can
be written in the form f = 0 with f ∈ W , where W is the C-vector subspace of
C[x1, x2, · · · , xn+1] generated by 1, x2

1, x
2
2, . . . , x

2
n+1. So, by Proposition 1.1 if f = 0

is one of these spheres, then f is a factor of

εW (X ) = det















1 x2
1 x2

2 · · · x2
n+1

0 X (x2
1) X (x2

2) · · · X (x2
n+1)

0 X 2(x2
1) X 2(x2

2) · · · X 2(x2
n+1)

...
...

... · · ·
...

0 Xn+1(x2
1) Xn+1(x2

2) · · · Xn+1(x2
n+1)















. (3.2)

Since m1 ≥ · · · ≥ mn+1 and from the definition of determinant it follow that
the degree of the polynomial εW (X ) is the degree of one of the polynomials of the
determinant (3.2) corresponding to a permutation of n + 1 of their elements with
maximal degree, which is given by the expression

Xn+1(x2
1)Xn(x2

2)Xn−1(x2
3) · · · X 2(x2

n)X (x2
n+1).

Thus the degree of the polynomial εW (X ) is

(n(m1 − 1) + m1 + 1) + ((n − 1)(m1 − 1) + m2 + 1)

+ · · · + (m1 + mn) + (mn+1 + 1)

=

(

n+1
∑

k=1

mk

)

+

(

n + 1

2

)

(m1 − 1) + (n + 1),

and therefore the number of concentric invariant spheres X taking into account
their multiplicities is given by the number of statement (b) of theorem.

Proof of Corollary 1.3. The proof is obtained by a simple calculation using
Theorem 1.2.
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