For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES
Muhammad Zainul Abidin,Chen Jiecheng
Keywords:Generalized Rotating Magnetohydrodynamics Equations; global wellposedness; Variable exponent Fourier-Besov spaces
Abstract:
      In this paper we study the three dimensional incompressible generalized rotating magnetohydrodynamics equations. By using littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data belong to critical variable exponent Fourier-Besov spaces $\mathcal{F}\dot{\mathscr{B}}_{p(\cdot),q}^{4-2\alpha-\frac{3}{p(\cdot)}}$. This paper extends some recent work about generalized Navier-Stokes equations.