All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Transverse homoclinic orbit bifurcated from a homoclinic manifold by the higher order melnikov integrals
Bin Long,Chang Rong Zhu
Keywords:Homoclinic manifold;Lyapunov-Schmidt reduction; Exponential dichotomies;Melnikov integral;Chaos
      Consider an autonomous ordinary differential equation in $\mathbb{R}^n$ that has a $d$ dimensional homoclinic solution manifold $W^H$ which can be locally parametrized by $(\alpha,\theta)\in \mathbb{R}^{d-1}\times \mathbb{R}$. We study bifurcation of the homoclinic solution manifold $W^H$ under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain the higher order Melnikov function. For a fixed $(\alpha_0,\theta_0)$ on $W^H$, if the Melnikov function have a simple zero, then the perturbed system can have transverse homoclinic solutions near $W^H$.