For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Infinitely many solutions for a nonlocal problems
Zhiyun Tang,Zengqi Ou
Keywords:Nonlocal problems; Infinitely many solutions; the $(P.S.)_c$ condition; the equivariant link theorem
Abstract:
      Consider a class of nonlocal problems \begin{eqnarray*} \left \{\begin{array}{ll} -(a-b\int_{\Omega}|\nabla u|^2dx)\Delta u= f(x,u),& \textrm{$x \in\Omega$},\u=0, & \textrm{$x \in\partial\Omega$}, \end{array} \right. \end{eqnarray*} where $a>0, b>0$,~$\Omega\subset \mathbb{R}^N$ is a bounded open domain, $f:\overline{\Omega} \times \mathbb R \longrightarrow \mathbb R $ is a Carath$\acute{\mbox{e}}$odory function. Under suitable conditions, the equivariant link theorem without the $(P.S.)$ condition due to Willem is applied to prove that the above problem has infinitely many solutions, whose energy increasingly tends to $a^2/(4b)$, and they are neither large nor small.