For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Periodic and Quasi-periodic Solutions for the Complex Swift-Hohenberg Equation
Lufang Mi,Wenyan Cui,Honglian You
Keywords:Swift-Hohenberg equation; periodic solution; quasi-periodic solution; normal form
Abstract:
      In this paper, we consider the complex Swift-Hohenberg(CSH) equation $$\frac{\partial u}{\partial t}=\lambda u-(\alpha+\mathrm{i}\beta)\l(1+\frac{\partial^2}{\partial x^2}\r)^2u-(\sigma+\mathrm{i}\rho)|u|^2u $$ subject to periodic boundary conditions. Using an infinite dimensional KAM theorem, we prove that there exist a continuous branch of periodic solutions and a Cantorian branch of quasi-periodic solution for the above equation.