For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Global dynamics of a Cholera model with age-of-immunity structure and reinfection
Liming Cai
Keywords:Cholera model; duration time of immunity; Lyapunov functional; Global stability
Abstract:
      To understand V.Cholera transmission dynamics, in this paper, a mathematical model for the dynamics of cholera with reinfection is formulated that incorporates the duration time of the recovery individuals (age-of-immunity). The basic reproduction number $\Re_0$ for the model is identified and the threshold property of $\Re_0$ is established. By applying the persistence theory for infinite-dimensional systems, we show that the disease is uniformly persistent if the reproductive number $ \Re_0>1$. By constructing a suitable Lyapunov function, the global stability of the infection-free equilibrium in the system is obtained for $\Re_0<1$; the unique endemic equilibrium of the system is globally asymptotically stable for $\Re_0>1$.