All Issues

Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
On equalities of BLUEs for a multiple restricted partitioned linear model
Keywords:Partitioned linear model, Restricted models, BLUE, Additive decomposition of estimation, Moore-Penrose inverse.
      For the multiple restricted partitioned linear model {\color{blue}${\mathscr{M}}=\{y, X_1$ $\beta_1+\cdots+X_s\beta_s\mid A_1\beta_1=b_1, \cdots, A_s\beta_s=b_s, \Sigma\}$, the relationships between the restricted partitioned linear model ${\mathscr{M}}$ and the corresponding $s$ small restricted linear models ${\mathscr{M}}_i=\{y, X_i\beta_i\mid A_i\beta_i=b_i, \Sigma\},~i=1, \cdots , s$ are studied. The necessary and sufficient conditions for the best linear unbiased estimators $(\mbox{BLUEs})$ under the full restricted model to be the sums of BLUEs under the $s$ small restricted model are derived.} Some statistical properties of the \mbox{BLUEs} are also described.