The dynamic behavior of deterministic and stochastic delayed SIQS model 

Keywords:Random perturbations; It\^{o}$^{\prime} $s formula; The threshold; Time delay. 
Abstract: 
In this paper, we present the deterministic and stochastic delayed SIQS epidemic models. For the deterministic model, the basic reproductive number $R_{0}$ is given. Moreover, when $R_{0}<1$, the diseasefree equilibrium is globally asymptotical stable. When $R_{0}>1$ and additional conditions hold, the endemic equilibrium is globally asymptotical stable. For the stochastic model, a sharp threshold $\overset{\wedge }{R}_{0}$ which determines the extinction or persistence in the mean of the disease is presented. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. Numerical simulations are also conducted in the analytic results. 



