For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 1, 2016, Pages 216-226                                                                DOI:10.11948/2016018
Norm estimations for perturbations of the weighted Moore-Penrose inverse
XiaoboZhang,Qingxiang Xu,Yinmin Wei
Keywords:Weighted Moore-Penrose inverse  norm upper bound  weighted linear least squares problem.
Abstract:
      For a complex matrix $A\in \mathbb{C}^{m\times n}$, the relationship between the weighted Moore-Penrose inverse $A^\dag_{M_1N_1}$ and $A^\dag_{M_2N_2}$ is studied, and an important formula is derived,where $M_1\in \mathbb{C}^{m\times m}, N_1\in\mathbb{C}^{n\times n}$ and $M_2\in \mathbb{C}^{m\times m}, N_2\in\mathbb{C}^{n\times n}$ are different pair of positive definite hermitian matrices. Based on this formula, this paper initiates the study of the perturbation estimations for $A^\dag_{MN}$ in the case that $A$ is fixed, whereas both $M$ and $N$ are variable. The obtained norm upper bounds are then applied to the perturbation estimations for the solutions to the weighted linear least squares problems.
PDF      Download reader