For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 1, 2016, Pages 227-241                                                                DOI:10.11948/2016019
Global dynamics of a general brucellosis model with discrete delay
Qiang Hou,Feng Zhang
Keywords:Brucellosis  indirect transmission  discrete delay  global stability  Lyapunov function.
Abstract:
      For the prevention and control of brucellosis, it is important to investigate the mechanism of brucellosis transmission. Based on the characteristics of the spread of brucellosis, a susceptible-exposed-infectious-brucella (SEIB) delay dynamic model is proposed with the general incidence, elimination rate and shedding rate of pathogen. Under biologically motivated assumptions, it shows the uniqueness of the endemic equilibrium, and investigates the global asymptotically stability of the disease-free equilibrium and the endemic equilibrium. The results suggest that the global stability of equilibria depends entirely on the basic reproduction number $R_0$ and time delay is harmless for the stability of equilibria. Finally, some specific examples and numerical simulations are used to illustrate the utilization of research results and reveal the biological significance of hypothesis $(H_7)$, which implies that the dynamics of brucellosis transmission depend largely on the development of the prevention and control strategies.
PDF      Download reader