For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 2, 2017, Pages 411-426                                                                DOI:10.11948/2017026
Bifurcation and chaos in a discrete time predator-prey system of Leslie type with generalized Holling type III functional response
Ali Atabaigi
Keywords:Predator-prey system, discrete time dynamical system, period doubling bifurcation, Neimark-Sacker bifurcation, chaotic dynamic, chaos Control.
Abstract:
      This paper is devoted to study a discrete time predator-prey system of Leslie type with generalized Holling type III functional response obtained using the forward Euler scheme. Taking the integration step size as the bifurcation parameter and using the center manifold theory and bifurcation theory, it is shown that by varying the parameter the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of $\mathbb{R}_+^2$. Numerical simulations are implemented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as cascade of period-doubling bifurcation in period-$2$, $4$, $8$, quasi-periodic orbits and the chaotic sets. These results shows much richer dynamics of the discrete model compared with the continuous model. The maximum Lyapunov exponent is numerically computed to confirm the complexity of the dynamical behaviors. Moreover, we have stabilized the chaotic orbits at an unstable fixed point using the feedback control method.
PDF      Download reader