For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 4, 2016, Pages 950-967                                                                DOI:10.11948/2016062
Affine-Periodic Solutions and Pseudo Affine-Periodic Solutions for Differential Equations with Exponential Dichotomy and Exponential Trichotomy
Cheng Cheng,Fushan Huang,Yong Li
Keywords:Exponential dichotomy, exponential trichotomy, affine-periodic solutions, pseudo affine-periodic solutions.
Abstract:
      It is proved that every $(Q,T)$-affine-periodic differential equation has a $(Q,T)$-affine-periodic solution if the corresponding homogeneous linear equation admits exponential dichotomy or exponential trichotomy. This kind of ``periodic'' solutions might be usual periodic or quasi-periodic ones if $Q$ is an identity matrix or orthogonal matrix. Hence solutions also possess certain symmetry in geometry. The result is also extended to the case of pseudo affine-periodic solutions.
PDF      Download reader