All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 6, Number 4, 2016, Pages 950-967                                                                DOI:10.11948/2016062
Affine-Periodic Solutions and Pseudo Affine-Periodic Solutions for Differential Equations with Exponential Dichotomy and Exponential Trichotomy
Cheng Cheng,Fushan Huang,Yong Li
Keywords:Exponential dichotomy, exponential trichotomy, affine-periodic solutions, pseudo affine-periodic solutions.
      It is proved that every $(Q,T)$-affine-periodic differential equation has a $(Q,T)$-affine-periodic solution if the corresponding homogeneous linear equation admits exponential dichotomy or exponential trichotomy. This kind of ``periodic'' solutions might be usual periodic or quasi-periodic ones if $Q$ is an identity matrix or orthogonal matrix. Hence solutions also possess certain symmetry in geometry. The result is also extended to the case of pseudo affine-periodic solutions.
PDF      Download reader